scholarly journals Effect of Permittivity on the Electric-Field-Driven Rotation Dynamics in a Liquid Film

2022 ◽  
Vol 3 (1) ◽  
pp. 78-87
Author(s):  
Reza Shirsavar ◽  
Saeid Mollaei ◽  
Mansoure Moeini Rizi ◽  
Ali-Reza Moradi ◽  
Ahmad Amjadi ◽  
...  

Applying a constant electric field on a suspended film of liquid that carries an electric current, either by the transport of ions or surface charges, induces a rotation in the film. This system is known as “liquid film motor”. So far, the effect of permittivity of the liquid on its rotation has been ignored. We showed that the permittivity of the liquid can significantly affect the dynamics of rotation. Using an experimental approach, we studied the liquid film rotation for a broad range of pure liquids with diverse permittivities and surface tensions. We observed two different regimes of rotation depending on the permittivity of the liquids. We also found that there is no correlation between the surface tension of the liquid and the angular velocity of the rotation. We considered a theoretical framework and suggested scenarios to explain our experimental observations. These results help in better understanding the physics of liquid film motors and suggest opportunities for new flow manipulation techniques at small scales.

2015 ◽  
Vol 29 (29) ◽  
pp. 1550206
Author(s):  
A. I. Agafonov

In this paper, using the Boltzmann transport equation, we study the zero temperature resistance of perfect metallic crystals of a finite thickness d along which a weak constant electric field E is applied. This resistance, hereinafter referred to as the phonon residual resistance, is caused by the inelastic scattering of electrons heated by the electric field, with emission of long-wave acoustic phonons and is proportional to [Formula: see text]. Consideration is carried out for Cu, Ag and Au perfect crystals with the thickness of about 1 cm, in the fields of the order of 1 mV/cm. Following the Matthiessen rule, the resistance of the pure crystals, the thicknesses of which are much larger than the electron mean free path is represented as the sum of both the impurity and phonon residual resistances. The condition on the thickness and field is found at which the low-temperature resistance of pure crystals does not depend on their purity and is determined by the phonon residual resistivity of the ideal crystals. The calculations are performed for Cu with a purity of at least 99.9999%.


2005 ◽  
Vol 19 (28n29) ◽  
pp. 1547-1550
Author(s):  
YOULIANG CHENG ◽  
XIN LI ◽  
ZHONGYAO FAN ◽  
BOFEN YING

Representing surface tension by nonlinear relationship on temperature, the boundary value problem of linear stability differential equation on small perturbation is derived. Under the condition of the isothermal wall the effects of nonlinear surface tension on stability of heat transfer in saturated liquid film of different liquid low boiling point gases are investigated as wall temperature is varied.


2002 ◽  
Vol 16 (17n18) ◽  
pp. 2529-2535
Author(s):  
R. Tao ◽  
X. Xu ◽  
Y. C. Lan

When a strong electric field is applied to a suspension of micron-sized high T c superconducting particles in liquid nitrogen, the particles quickly aggregate together to form millimeter-size balls. The balls are sturdy, surviving constant heavy collisions with the electrodes, while they hold over 106 particles each. The phenomenon is a result of interaction between Cooper pairs and the strong electric field. The strong electric field induces surface charges on the particle surface. When the applied electric field is strong enough, Cooper pairs near the surface are depleted, leading to a positive surface energy. The minimization of this surface energy leads to the aggregation of particles to form balls.


2008 ◽  
Vol 617 ◽  
pp. 283-299 ◽  
Author(s):  
E. S. BENILOV ◽  
V. S. ZUBKOV

We consider an infinite plate being withdrawn (at an angle α to the horizontal, with a constant velocity U) from an infinite pool of viscous liquid. Assuming that the effects of inertia and surface tension are weak, Derjaguin (C. R. Dokl. Acad. Sci. URSS, vol. 39, 1943, p. 13.) conjectured that the ‘load’ l, i.e. the thickness of the liquid film clinging to the plate, is l=(μU/ρgsinα)1/2, where ρ and μ are the liquid's density and viscosity, and g is the acceleration due to gravity.In the present work, the above formula is derived from the Stokes equations in the limit of small slopes of the plate (without this assumption, the formula is invalid). It is shown that the problem has infinitely many steady solutions, all of which are stable – but only one of these corresponds to Derjaguin's formula. This particular steady solution can only be singled out by matching it to a self-similar solution describing the non-steady part of the film between the pool and the film's ‘tip’.Even though the near-pool region where the steady state has been established expands with time, the upper, non-steady part of the film (with its thickness decreasing towards the tip) expands faster and, thus, occupies a larger portion of the plate. As a result, the mean thickness of the film is 1.5 times smaller than the load.


Sign in / Sign up

Export Citation Format

Share Document