scholarly journals Dynamic Finite Element Modelling and Vibration Analysis of Prestressed Layered Bending–Torsion Coupled Beams

2022 ◽  
Vol 3 (1) ◽  
pp. 103-120
Author(s):  
MirTahmaseb Kashani ◽  
Seyed M. Hashemi

Free vibration analysis of prestressed, homogenous, Fiber-Metal Laminated (FML) and composite beams subjected to axial force and end moment is revisited. Finite Element Method (FEM) and frequency-dependent Dynamic Finite Element (DFE) models are developed and presented. The frequency results are compared with those obtained from the conventional FEM (ANSYS, Canonsburg, PA, USA) as well as the Homogenization Method (HM). Unlike the FEM, the application of the DFE formulation leads to a nonlinear eigenvalue problem, which is solved to determine the system’s natural frequencies and modes. The governing differential equations of coupled flexural–torsional vibrations, resulting from the end moment, are developed using Euler–Bernoulli bending and St. Venant torsion beam theories and assuming linear harmonic motion and linearly elastic materials. Illustrative examples of prestressed layered, FML, and unidirectional composite beam configurations, exhibiting geometric bending-torsion coupling, are studied. The presented DFE and FEM results show excellent agreement with the homogenization method and ANSYS modeling results, with the DFE’s rates of convergence surpassing all. An investigation is also carried out to examine the effects of various combined axial loads and end moments on the stiffness and fundamental frequencies of the structure. An illustrative example, demonstrating the application of the presented methods to the buckling analysis of layered beams is also presented.

2017 ◽  
Vol 893 ◽  
pp. 380-383
Author(s):  
Jun Xia ◽  
Z. Shen ◽  
Kun Liu

The tapered cross-section beams made of steel-concrete composite material are widely used in engineering constructions and their dynamic behavior is strongly influenced by the type of shear connection jointing the two different materials. The 1D high order finite element model for tapered cross-section steel-concrete composite material beam with interlayer slip was established in this paper. The Numerical results for vibration nature frequencies of the composite beams with two typical boundary conditions were compared with ANSYS using 2D plane stress element. The 1D element is more efficient and economical for the common tapered cross-section steel-concrete composite material beams in engineering.


2018 ◽  
Vol 16 (1) ◽  
pp. 944-948 ◽  
Author(s):  
Sinan Maraş ◽  
Mustafa Yaman ◽  
Mehmet Fatih Şansveren ◽  
Sina Karimpour Reyhan

AbstractIn recent years, studies on the development of new and advanced composite materials have been increasing. Among these new technological products, Fiber Metal Laminates (FML), and hybrid structures made of aluminium, carbon, glass or aramid fiber, are preferred especially in the aircraft industry due to their high performance. Therefore, free vibration analysis is necessary for the design process of such structures. In this study, the vibration characteristics of FML for clamped-free boundary conditions were investigated experimentally and numerically. Firstly, numerical results were obtained using Finite Element Method (FEM) and then these results were compared with the experimental results. It was seen that the numerical results were in good agreement with the experimental results. As the theoretical model was justified, the effects of various parameters such as number of layers, fiber orientations, and aluminium layer thickness on the in-plane vibration characteristics of the FML straight beam were analysed using FEM. Thus, most important parameters affecting the vibration characteristics of the hybrid structures were determined.


Sign in / Sign up

Export Citation Format

Share Document