scholarly journals Innovative Skin Product O/W Emulsions Containing Lignin, Multiwall Carbon Nanotubes and Graphene Oxide Nanoadditives with Enhanced Sun Protection Factor and UV Stability Properties

Applied Nano ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 1-15
Author(s):  
Nikolaos D. Bikiaris ◽  
Ioanna Koumentakou ◽  
Smaro Lykidou ◽  
Nikolaos Nikolaidis

In the present study, oil-in-water (O/W) sunscreen emulsions were prepared containing different portions of lignin (LGN), multiwall carbon nanotubes (MWCNTs) and graphene oxide (GO) nanoadditives. The stability in terms of pH and viscosity of emulsions was thoroughly studied for up to 90 days, exhibiting high stability for all produced O/W emulsions. The antioxidant activity of emulsions was also analyzed, presenting excellent antioxidant properties for the emulsion that contains LGN due to its phenolic compounds. Moreover, the emulsions were evaluated for their ultraviolet (UV) radiation protection ability in terms of sun protection factor (SPF) and UV stability. SPF values varied between 6.48 and 21.24 while the emulsion containing 2% w/v MWCNTs showed the highest SPF index and all samples demonstrated great UV stability. This work hopefully aims to contributing to the research of more organic additives for cosmetic application with various purposes.

2015 ◽  
Vol 1782 ◽  
pp. 1-8
Author(s):  
Ning-Qin Deng ◽  
He Tian ◽  
Qing-Tang Xue ◽  
Zhe Wang ◽  
Hai-Ming Zhao ◽  
...  

ABSTRACTNanogenerators (NGs) have great potential to solve the problems of energy depletion and environmental pollution. Here, two types of flexible nanogenerators (FNGs) based on graphene oxide (GO) and multiwall carbon nanotubes (MW-CNTs) are presented. The peak output voltage and current of GO based FNG reached up to 2 V and 30 nA, respectively, under 15 N force at 1 Hz. Moreover, the output voltage could be improved to 34.4 V when the frequency was increased to 10 Hz. It was also found the output voltage increased from 0.1 V to 2.0 V using a released GO structure. The other FNG was made by MW-CNTs mixed with ZnO nanoparticles (NPs). Its output voltage and power reached up to 7.5 V and 18.75 mW, respectively, which is much larger than that of bare ZnO based FNG. Furthermore, a peak voltage of 30 V could be gained by stamping one’s foot on the FNG. Finally, a modified NG was fabricated using four springs and two flexible layers. As a result, the voltage and power reached up to 9 V and 27mW, respectively. These works may bring out broad applications in energy harvesting.


2015 ◽  
Vol 17 (2) ◽  
pp. 776-780 ◽  
Author(s):  
Barun Kumar Barman ◽  
Karuna Kar Nanda

We demonstrate a Si-mediated environmentally friendly reduction of graphene oxide (GO) and the fabrication of hybrid electrode materials with multiwall carbon nanotubes and nanofibers. The reduction of GO is facilitated by the nascent hydrogen generated by the reaction between Si and KOH. The overall process consumes 10 to 15 μm of Si each time and the same Si substrate can be used multiple times.


RSC Advances ◽  
2015 ◽  
Vol 5 (31) ◽  
pp. 24132-24138 ◽  
Author(s):  
Sourav Biswas ◽  
Goutam Prasanna Kar ◽  
Deepshikha Arora ◽  
Suryasarathi Bose

Multiwall carbon nanotubes (MWNTs) were anchored onto graphene oxide sheets (GOs) via diazonium and C–C coupling reactions and characterized by spectroscopic and electron microscopic techniques.


Sign in / Sign up

Export Citation Format

Share Document