scholarly journals Wind Turbulence Statistics of the Atmospheric Inertial Sublayer under Near-Neutral Conditions

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1087
Author(s):  
Eslam Reda Lotfy ◽  
Zambri Harun

The inertial sublayer comprises a considerable and critical portion of the turbulent atmospheric boundary layer. The mean windward velocity profile is described comprehensively by the Monin–Obukhov similarity theory, which is equivalent to the logarithmic law of the wall in the wind tunnel boundary layer. Similar logarithmic relations have been recently proposed to correlate turbulent velocity variances with height based on Townsend’s attached-eddy theory. The theory is particularly valid for high Reynolds-number flows, for example, atmospheric flow. However, the correlations have not been thoroughly examined, and a well-established model cannot be reached for all turbulent variances similar to the law of the wall of the mean-velocity. Moreover, the effect of atmospheric thermal condition on Townsend’s model has not been determined. In this research, we examined a dataset of free wind flow under a near-neutral range of atmospheric stability conditions. The results of the mean velocity reproduce the law of the wall with a slope of 2.45 and intercept of −13.5. The turbulent velocity variances were fitted by logarithmic profiles consistent with those in the literature. The windward and crosswind velocity variances obtained the average slopes of −1.3 and −1.7, respectively. The slopes and intercepts generally increased away from the neutral state. Meanwhile, the vertical velocity and temperature variances reached the ground-level values of 1.6 and 7.8, respectively, under the neutral condition. The authors expect this article to be a groundwork for a general model on the vertical profiles of turbulent statistics under all atmospheric stability conditions.

Author(s):  
Takanori Nakamura ◽  
Takatsugu Kameda ◽  
Shinsuke Mochizuki

Experiments were performed to investigate the effect of an adverse pressure gradient on the mean velocity and turbulent intensity profiles for an equilibrium boundary layer. The equilibrium boundary layer, which makes self-similar profiles, was constructed using a power law distribution of free stream velocity. The exponent of the law was adjusted to −0.188. The wall shear stress was measured with a drag balance by a floating element. The investigation of the law of the wall and the similarity of the streamwise turbulent intensity profile was made using both a friction velocity and new proposed velocity scale. The velocity scale is derived from the boundary layer equation. The mean velocity gradient profile normalized with the height and the new velocity scale exists the region where the value is almost constant. The turbulent intensity profiles normalized with the friction velocity strongly depend on the nondimensional pressure gradient near the wall. However, by mean of the local velocity scale, the profiles might be achieved to be similar with that of a zero pressure gradient.


1956 ◽  
Vol 1 (2) ◽  
pp. 191-226 ◽  
Author(s):  
Donald Coles

After an extensive survey of mean-velocity profile measurements in various two-dimensional incompressible turbulent boundary-layer flows, it is proposed to represent the profile by a linear combination of two universal functions. One is the well-known law of the wall. The other, called the law of the wake, is characterized by the profile at a point of separation or reattachment. These functions are considered to be established empirically, by a study of the mean-velocity profile, without reference to any hypothetical mechanism of turbulence. Using the resulting complete analytic representation for the mean-velocity field, the shearing-stress field for several flows is computed from the boundary-layer equations and compared with experimental data.The development of a turbulent boundary layer is ultimately interpreted in terms of an equivalent wake profile, which supposedly represents the large-eddy structure and is a consequence of the constraint provided by inertia. This equivalent wake profile is modified by the presence of a wall, at which a further constraint is provided by viscosity. The wall constraint, although it penetrates the entire boundary layer, is manifested chiefly in the sublayer flow and in the logarithmic profile near the wall.Finally, it is suggested that yawed or three-dimensional flows may be usefully represented by the same two universal functions, considered as vector rather than scalar quantities. If the wall component is defined to be in the direction of the surface shearing stress, then the wake component, at least in the few cases studied, is found to be very nearly parallel to the gradient of the pressure.


2014 ◽  
Vol 757 ◽  
pp. 498-513 ◽  
Author(s):  
Carlo Zúñiga Zamalloa ◽  
Henry Chi-Hin Ng ◽  
Pinaki Chakraborty ◽  
Gustavo Gioia

AbstractUnlike the classical scaling relations for the mean-velocity profiles of wall-bounded uniform turbulent flows (the law of the wall, the defect law and the log law), which are predicated solely on dimensional analysis and similarity assumptions, scaling relations for the turbulent-energy spectra have been informed by specific models of wall turbulence, notably the attached-eddy hypothesis. In this paper, we use dimensional analysis and similarity assumptions to derive three scaling relations for the turbulent-energy spectra, namely the spectral analogues of the law of the wall, the defect law and the log law. By design, each spectral analogue applies in the same spatial domain as the attendant scaling relation for the mean-velocity profiles: the spectral analogue of the law of the wall in the inner layer, the spectral analogue of the defect law in the outer layer and the spectral analogue of the log law in the overlap layer. In addition, as we are able to show without invoking any model of wall turbulence, each spectral analogue applies in a specific spectral domain (the spectral analogue of the law of the wall in the high-wavenumber spectral domain, where viscosity is active, the spectral analogue of the defect law in the low-wavenumber spectral domain, where viscosity is negligible, and the spectral analogue of the log law in a transitional intermediate-wavenumber spectral domain, which may become sizable only at ultra-high$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}_{\tau }$), with the implication that there exist model-independent one-to-one links between the spatial domains and the spectral domains. We test the spectral analogues using experimental and computational data on pipe flow and channel flow.


1965 ◽  
Vol 22 (2) ◽  
pp. 285-304 ◽  
Author(s):  
A. E. Perry ◽  
P. N. Joubert

The purpose of this paper is to provide some possible explantions for certain observed phenomena associated with the mean-velocity profile of a turbulent boundary layer which undergoes a rapid yawing. For the cases considered the yawing is caused by an obstruction attached to the wall upon which the boundary layer is developing. Only incompressible flow is considered.§1 of the paper is concerned with the outer region of the boundary layer and deals with a phenomenon observed by Johnston (1960) who described it with his triangular model for the polar plot of the velocity distribution. This was also observed by Hornung & Joubert (1963). It is shown here by a first-approximation analysis that such a behaviour is mainly a consequence of the geometry of the apparatus used. The analysis also indicates that, for these geometries, the outer part of the boundary-layer profile can be described by a single vector-similarity defect law rather than the vector ‘wall-wake’ model proposed by Coles (1956). The former model agrees well with the experimental results of Hornung & Joubert.In §2, the flow close to the wall is considered. Treating this region as an equilibrium layer and using similarity arguments, a three-dimensional version of the ‘law of the wall’ is derived. This relates the mean-velocity-vector distribution with the pressure-gradient vector and wall-shear-stress vector and explains how the profile skews near the wall. The theory is compared with Hornung & Joubert's experimental results. However at this stage the results are inconclusive because of the lack of a sufficient number of measured quantities.


A set of model equations is given to describe the gross features of a statistically steady or 'slowly varying’ inhomogeneous field of turbulence and the mean velocity distribution. The equations are based on the idea that turbulence can be characterized by ‘densities’ which obey nonlinear diffusion equations. The diffusion equations contain terms to describe the convection by the mean flow, the amplification due to interaction with a mean velocity gradient, the dissipation due to the interaction of the turbulence with itself, and the dif­fusion also due to the self interaction. The equations are similar to a set proposed by Kolmo­gorov (1942). It is assumed that both an ‘energy density’ and a ‘vorticity density’ satisfy diffusion equations, and that the self diffusion is described by an eddy viscosity which is a function of the energy and vorticity densities; the eddy viscosity is also assumed to describe the diffu­sion of mean momentum by the turbulent fluctuations. It is shown that with simple and plausible assumptions about the nature of the interaction terms, the equations form a closed set. The appropriate boundary conditions at a solid wall and a turbulent interface, with and without entrainment, are discussed. It is shown that the dimensionless constants which appear in the equations can all be estimated by general arguments. The equations are then found to predict the von Kármán constant in the law of the wall with reasonable accuracy. An analytical solution is given for Couette flow, and the result of a numerical study of plane Poiseuille flow is described. The equations are also applied to free turbulent flows. It is shown that the model equations completely determine the structure of the similarity solutions, with the rate of spread, for instance, determined by the solution of a nonlinear eigenvalue problem. Numerical solutions have been obtained for the two-dimensional wake and jet. The agreement with experiment is good. The solutions have a sharp interface between turbulent and non-turbulent regions and the mean velocity in the turbulent part varies linearly with distance from the interface. The equations are applied qualitatively to the accelerating boundary layer in flow towards a line sink, and the decelerating boundary layer with zero skin friction. In the latter case, the equations predict that the mean velocity should vary near the wall like the 5/3 power of the distance. It is shown that viscosity can be incorporated formally into the model equations and that a structure can be given to the interface between turbulent and non-turbulent parts of the flow.


1970 ◽  
Vol 42 (2) ◽  
pp. 411-427 ◽  
Author(s):  
Kirit S. Yajnik

A theory is proposed in this paper to describe the behaviour of a class of turbulent shear flows as the Reynolds number approaches infinity. A detailed analysis is given for simple representative members of this class, such as fully developed channel and pipe flows and two-dimensional turbulent boundary layers. The theory considers an underdetermined system of equations and depends critically on the idea that these flows consist of two rather different types of regions. The method of matched asymptotic expansions is employed together with asymptotic hypotheses describing the order of various terms in the equations of mean motion and turbulent kinetic energy. As these hypotheses are not closure hypotheses, they do not impose any functional relationship between quantities determined by the mean velocity field and those determined by the Reynolds stress field. The theory leads to asymptotic laws corresponding to the law of the wall, the logarithmic law, the velocity defect law, and the law of the wake.


Author(s):  
M. Agelinchaab ◽  
M. F. Tachie

A particle image velocimetry is used to study the characteristics of separated and reattached turbulent flow over two-dimensional transverse blocks of square, rectangular and semi-circular cross-sections fixed to the bottom wall of an open channel. The ratio of upstream boundary layer thickness to block height is considerably higher than in prior studies. The results show that the mean and turbulent statistics in the recirculation region and downstream of reattachment are significantly different from the upstream boundary layer. The variation of the Reynolds stresses along the separating streamlines is discussed within the context of vortex stretching, longitudinal strain rate and wall damping. It appears wall damping is a more dominant mechanism in the vicinity of reattachment. The levels of turbulence diffusion and production by the normal stresses are significantly higher than in classical turbulent boundary layers. The bulk of turbulence production occurs in mid-layer and transported into the inner and outer layers. The results also reveal that the curvature of separating streamline, separating bubble beneath it as well as the mean velocity and turbulent quantities depend strongly on block geometry.


2000 ◽  
Vol 422 ◽  
pp. 319-346 ◽  
Author(s):  
DAVID B. DE GRAAFF ◽  
JOHN K. EATON

Despite extensive study, there remain significant questions about the Reynolds-number scaling of the zero-pressure-gradient flat-plate turbulent boundary layer. While the mean flow is generally accepted to follow the law of the wall, there is little consensus about the scaling of the Reynolds normal stresses, except that there are Reynolds-number effects even very close to the wall. Using a low-speed, high-Reynolds-number facility and a high-resolution laser-Doppler anemometer, we have measured Reynolds stresses for a flat-plate turbulent boundary layer from Reθ = 1430 to 31 000. Profiles of u′2, v′2, and u′v′ show reasonably good collapse with Reynolds number: u′2 in a new scaling, and v′2 and u′v′ in classic inner scaling. The log law provides a reasonably accurate universal profile for the mean velocity in the inner region.


1963 ◽  
Vol 15 (3) ◽  
pp. 368-384 ◽  
Author(s):  
H. G. Hornung ◽  
P. N. Joubert

The mean velocity distribution in a low-speed three-dimensional turbulent boundary-layer flow was investigated experimentally. The experiments were performed on a large-scale model which consisted of a flat plate on which secondary flow was generated by the pressure field introduced by a circular cylinder standing on the plate. The Reynolds number based on distance from the leading edge of the plate was about 6 x 106.It was found that the wall-wake model of Coles does not apply for flow of this kind and the model breaks down in the case of conically divergent flow with rising pressure, for example, in the results of Kehl (1943). The triangular model for the yawed turbulent boundary layer proposed by Johnston (1960) was confirmed with good correlation. However, the value ofyuτ/vwhich occurs at the vertex of the triangle was found to range up to 150 whereas Johnston gives the highest value as about 16 and hence assumes that the peak lies within the viscous sublayer. Much of his analysis is based on this assumption.The dimensionless velocity-defect profile was found to lie in a fairly narrow band when plotted againsty/δ for a wide variation of other parameters including the pressure gradient. The law of the wall was found to apply in the same form as for two-dimensional flow but for a more limited range ofy.


1984 ◽  
Vol 143 ◽  
pp. 23-46 ◽  
Author(s):  
S. Agrawal ◽  
A. F. Messiter

The local interaction of an oblique shock wave with an unseparated turbulent boundary layer at a shallow two-dimensional compression corner is described by asymptotic expansions for small values of the non-dimensional friction velocity and the flow turning angle. It is assumed that the velocity-defect law and the law of the wall, adapted for compressible flow, provide an asymptotic representation of the mean velocity profile in the undisturbed boundary layer. Analytical solutions for the local mean-velocity and pressure distributions are derived in supersonic, hypersonic and transonic small-disturbance limits, with additional intermediate limits required at distances from the corner that are small in comparison with the boundary-layer thickness. The solutions describe small perturbations in an inviscid rotational flow, and show good agreement with available experimental data in most cases where effects of separation can be neglected. Calculation of the wall shear stress requires solution of the boundary-layer momentum equation in a sublayer which plays the role of a new thinner boundary layer but which is still much thicker than the wall layer. An analytical solution is derived with a mixing-length approximation, and is in qualitative agreement with one set of measured values.


Sign in / Sign up

Export Citation Format

Share Document