scholarly journals Nature-Based Resilience: A Multi-Type Evaluation of Productive Green Infrastructure in Agricultural Settings in Ontario, Canada

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1183
Author(s):  
Vidya Anderson ◽  
William A. Gough

Nature-based solutions such as green infrastructure present an opportunity to reduce air pollutant concentrations and greenhouse gas emissions. This paper presents new findings from a controlled field study in Ontario, Canada, evaluating the impact of productive applications of green infrastructure on air pollution and carbon dioxide concentrations across different agricultural morphologies compared to other non-productive applications. This study demonstrates that productive green infrastructure applications are as beneficial as non-productive applications in reducing ozone, nitrogen dioxide, and carbon dioxide concentrations. Nature-based solutions present an opportunity to build climate resilience into agricultural systems through supply-side mitigation and adaptation. The implementation of productive green infrastructure could be a viable agricultural practice to address multiple climate change impacts.

2021 ◽  
Vol 13 (1) ◽  
pp. 379
Author(s):  
Vidya Anderson ◽  
William A. Gough

Widespread implementation of nature-based solutions like green infrastructure, provides a multi-functional strategy to increase climate resilience, enhance ecological connectivity, create healthier communities, and support sustainable urban development. This paper presents a decision-support framework to facilitate adoption of green infrastructure within communities using the Climate Change Local Adaptation Action Model (CCLAAM) developed for this purpose. It also presents an ecosystems-based approach to bridging the gap between climate change mitigation and adaptation actions in Ontario, Canada. Green infrastructure could be a viable strategy to address multiple climate change impacts and support the implementation of the UN Sustainable Development Goals (SDGs).


2019 ◽  
Vol 14 (4) ◽  
pp. 044018 ◽  
Author(s):  
Amelia T Keyes ◽  
Kathleen F Lambert ◽  
Dallas Burtraw ◽  
Jonathan J Buonocore ◽  
Jonathan I Levy ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadeeja Henna ◽  
Aysha Saifudeen ◽  
Monto Mani

AbstractClimate change impacts buildings in multiple ways, including extreme weather events and thermal stresses. Rural India comprising 65% of the population is characterised by vernacular dwellings evolved over time to passively regulate and maintain comfortable indoors. Increasing modernization in rural habitations (transitions) evident from the ingress of modern materials and electro-mechanical appliances undermines the ability of building envelopes to passively regulate and maintain comfortable indoors. While such trends are deemed good for the economy, their underlying implications in terms of climate change have not been adequately examined. The current study evaluates the climate-resilience of vernacular dwellings and those undergoing transitions in response to three climate-change scenarios, viz, A1B (rapid economic growth fuelled by balanced use of energy sources), A2 (regionally sensitive economic development) and B1 (structured economic growth and adoption of clean and resource efficient technologies). The study examines dwellings characteristic to three rural settlements representing three major climate zones in India and involves both real-time monitoring and simulation-based investigation. The study is novel in investigating the impact of climate change on indoor thermal comfort in rural dwellings, adopting vernacular and modern materials. The study revealed higher resilience of vernacular dwellings in response to climate change.


2021 ◽  
Vol 6 ◽  
pp. 100
Author(s):  
Michael Davies ◽  
Kristine Belesova ◽  
Melanie Crane ◽  
Joanna Hale ◽  
Andy Haines ◽  
...  

The Complex Urban Systems for Sustainability and Health (CUSSH) project is a global research programme on the complex systemic connections between urban development and health. Through transdisciplinary methods it will develop critical evidence on how to achieve the far-reaching transformation of cities needed to address vital environmental imperatives for planetary health in the 21st century. CUSSH’s core components include: (i) a review of evidence on the effects of climate actions (both mitigation and adaptation) and factors influencing their implementation in urban settings; (ii) the development and application of methods for tracking the progress of cities towards sustainability and health goals; (iii) the development and application of models to assess the impact on population health, health inequalities, socio-economic development and environmental parameters of urban development strategies, in order to support policy decisions; (iv) iterative in-depth engagements with stakeholders in partner cities in low-, middle- and high-income settings, using systems-based participatory methods, to test and support the implementation of the transformative changes needed to meet local and global health and sustainability objectives; (v) a programme of public engagement and capacity building. Through these steps, the programme will provide transferable evidence on how to accelerate actions essential to achieving population-level health and global climate goals through, amongst others, changing cities’ energy provision, transport infrastructure, green infrastructure, air quality, waste management and housing.


2021 ◽  
Vol 13 (18) ◽  
pp. 10004
Author(s):  
Valentina Bacciu ◽  
Maria Hatzaki ◽  
Anna Karali ◽  
Adeline Cauchy ◽  
Christos Giannakopoulos ◽  
...  

The Mediterranean islands’ blue economy and, more specifically, the tourism sector, largely regulate Europe’s gross product. Climate change threatens the ecological, societal, and economic sustainability of the islands in many ways, with increasing wildfires making up one of the most critical components of the climate change impacts on tourism. Here, we aim to identify and assess forest fire vulnerability and risk due to climate change for seven Mediterranean islands through the application of the “impact chain” conceptual framework. The backbone of this approach requires the integration of quantitative and qualitative data according to the three main risk components sensu the Intergovernmental Panel on Climate Change (IPCC), i.e., hazard, exposure, and vulnerability, with a structured participatory approach involving stakeholders and experts. Our results illustrate the islands with high potential for improvement in terms of adapting capacity and, by indicating the contribution of the different risk components, highlight the main environmental and socio-economic elements that affect the islands’ vulnerability and risk under climate change. The approach’s potentials and constraints are discussed, suggesting that the method can be handily used to point out the priorities that must be addressed by mitigation and adaptation policies and measures at the island level.


Author(s):  
Stefanos A. Nastis ◽  
Eirini Grammatiki Pagoni

Abstract The global climate system poses important challenges for the perception and understanding of its functioning from policymakers and the general public. The aim of the paper is to model through gamification, the evolution of understanding regarding the dynamics of climate change and climate change adaptation. Using a framework with repeated feedback loops, the impact of the rate of carbon dioxide absorption by natural ecosystems, the stochastic nature of economic systems and the stochastic and irreversible nature of global climate are analyzed, with the Dynamic Climate Change Simulator with Stochastic and Irreversible Climate Change. The simulator game models one control variable, carbon dioxide emissions and one stock variable, carbon dioxide concentrations in the atmosphere. In addition, the rate of carbon dioxide absorption by natural ecosystems is modeled, with business cycle shocks and climate change tipping points. The ability to control carbon dioxide concentrations to a goal level is evaluated and policy insights are provided about how learning about the dynamics of the Earth’s climate through gamification can be advanced.


Author(s):  
Vidya Anderson ◽  
William A. Gough ◽  
Branka Agic

The built environment is a physical determinant of health essential to the planning and development of a more equitable society. Communities face growing challenges due to environmental stressors such as climate change, with vulnerable communities experiencing a disproportionate burden of adverse health outcomes. The interdependencies between urban planning and public health outcomes are inextricable, with respect to improving access to healthier built environments for vulnerable and marginalized groups. Widespread implementation of nature-based solutions, such as green infrastructure, provides a multi-functional strategy to support sustainable development, increase climate resilience, enhance ecological connectivity, and create healthier communities. A Health Equity Impact Assessment presents the findings of a participatory research study utilizing key informant interviews of public health unit professionals (eight) and a survey of green infrastructure volunteers and workers (36) on the impact of green infrastructure on individual and community mental and physical well-being, service use, and perceived unmet needs, using Ontario, Canada as a case study. Study findings indicate that where green infrastructure is both productive and publicly accessible, the benefits were significant for vulnerable populations. These benefits include increased social connectivity, skills development, and food security. Green infrastructure could be a viable strategy to address environmental stressors, improve health equity, and support localization of the UN Sustainable Development Goals (SDGs).


Author(s):  
Francislene Angelotti ◽  
Laise Guerra Barbosa ◽  
Juliane Rafaele Alves Barros ◽  
Carlos Antonio Fernandes dos Santos

ABSTRACT The increase of CO2 concentrations and temperatures may affect the plant development and production. This study aimed to evaluate the impact of the increased temperature and carbon dioxide concentration on the development of cowpea cultivars. The experiment was conducted in growth chambers, with control of CO2 and temperature. A completely randomized design was carried out, in a 4 x 3 x 2 factorial arrangement [cultivar x temperature (day/night) x CO2], with three replicates. The duration of the cowpea vegetative and reproductive phases was evaluated and, at the end of the experiment, the number of pods per plant, number of grains per pod, seed weight, shoot fresh and dry matter weight were quantified. Temperature affects the development of cowpea cultivars, and the temperatures of 29 ºC (day)/23 ºC (night) lead to a higher seed weight. The increase of CO2 leads to a higher number of pods and seeds and seed weight. The BRS Tapaihum cultivar presented the highest number of pods and seeds and seed weight. In addition, the temperatures of 32 ºC (day)/29 ºC (night) lead to a greater flower abortion in the BRS Pujante and BRS Tapaihum cultivars.


2021 ◽  
Vol 6 ◽  
pp. 100
Author(s):  
Michael Davies ◽  
Kristine Belesova ◽  
Melanie Crane ◽  
Joanna Hale ◽  
Andy Haines ◽  
...  

This paper describes a global research programme on the complex systemic connections between urban development and health. Through transdisciplinary methods the Complex Urban Systems for Sustainability and Health (CUSSH) project will develop critical evidence on how to achieve the far-reaching transformation of cities needed to address vital environmental imperatives for planetary health in the 21st Century. CUSSH’s core components include: (i) a review of evidence on the effects of climate actions (both mitigation and adaptation) and factors influencing their implementation in urban settings; (ii) the development and application of methods for tracking the progress of cities towards sustainability and health goals; (iii) the development and application of models to assess the impact on population health, health inequalities, socio-economic development and environmental parameters of urban development strategies, in order to support policy decisions; (iv) iterative in-depth engagements with stakeholders in partner cities in low-, middle- and high-income settings, using systems-based participatory methods, to test and support the implementation of the transformative changes needed to meet local and global health and sustainability objectives; (v) a programme of public engagement and capacity building. Through these steps, the programme will provide transferable evidence on how to accelerate actions essential to achieving population-level health and global climate goals through, amongst others, changing cities’ energy provision, transport infrastructure, green infrastructure, air quality, waste management and housing.


Author(s):  
S. A. Lysenko

The spatial and temporal particularities of Normalized Differential Vegetation Index (NDVI) changes over territory of Belarus in the current century and their relationship with climate change were investigated. The rise of NDVI is observed at approximately 84% of the Belarus area. The statistically significant growth of NDVI has exhibited at nearly 35% of the studied area (t-test at 95% confidence interval), which are mainly forests and undeveloped areas. Croplands vegetation index is largely descending. The main factor of croplands bio-productivity interannual variability is precipitation amount in vegetation period. This factor determines more than 60% of the croplands NDVI dispersion. The long-term changes of NDVI could be explained by combination of two factors: photosynthesis intensifying action of carbon dioxide and vegetation growth suppressing action of air warming with almost unchanged precipitation amount. If the observed climatic trend continues the croplands bio-productivity in many Belarus regions could be decreased at more than 20% in comparison with 2000 year. The impact of climate change on the bio-productivity of undeveloped lands is only slightly noticed on the background of its growth in conditions of rising level of carbon dioxide in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document