scholarly journals Particle Shape Impact on the Radiative Forcing Efficiency Estimated from Single Levitated (NH4)2SO4 Particles

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1231
Author(s):  
Antonio Valenzuela Gutierrez

Levitation of single trapped particles enables the exploration of fundamental physicochemical aerosol properties never previously achieved. Experimental measurements showed that (NH4)2SO4’s particle shape deviated from sphericity during the crystallization process. Despite that, salt aerosols are assumed to be spheres even in low relative humidity (RH) in most climate models. In the analysis performed here, Mie and T-Matrix codes were operated to simulate crucial parameters needed to estimate the radiative forcing efficiency: extinction efficiency, asymmetry parameter and backscattering fraction. The incorporation of non-spherical effects in (NH4)2SO4 particles can cause a difference of up to 46% radiative forcing efficiency compared to the assumption of sphericity in the 0.3–0.6 µm particle radius range.

2017 ◽  
Vol 114 (19) ◽  
pp. 4899-4904 ◽  
Author(s):  
Edward Gryspeerdt ◽  
Johannes Quaas ◽  
Sylvaine Ferrachat ◽  
Andrew Gettelman ◽  
Steven Ghan ◽  
...  

Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol–cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration (Nd), previous studies have used the sensitivity of theNdto aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties in the present-day climate may not be suitable for determining the sensitivity of theNdto anthropogenic aerosol perturbations. Using an ensemble of global aerosol–climate models, this study demonstrates how joint histograms betweenNdand aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol–cloud interactions in satellite data.


2010 ◽  
Vol 10 (12) ◽  
pp. 31253-31300 ◽  
Author(s):  
S. K. Mishra ◽  
S. N. Tripathi ◽  
S. G. Aggarwal ◽  
A. Arola

Abstract. The radiative forcing estimation of the polluted mineral dust is limited due to lack of morphological analysis, mixing state with the carbonaceous components and the hematite content in the pure dust. The accumulation mode mineral dust has been found to mix with anthropogenically produced black carbon, organic carbon and brown carbon during long range transport. The above features of the polluted dust are not well accounted in the optical models and lead the uncertainty in the numerical estimation of their radiative impact. The Semi-external mixing being a prominent mixing of dust and carbonaceous components has not been studied in details so for compared to core-shell, internal and external mixing studies. In present study, we consider the pure mineral dust composed of non-metallic components (such as Quartz, Feldspar, Mica and Calcite) and metalic component like hematite (Fe2O3). The hematite percentage in the pure mineral dust governs its absorbance. Based on this hematite variation, the hematite fraction in pure mineral dust has been constrained between 0–8%. The morphological and mineralogical characterization of the polluted dust led to consider the three sphere, two sphere and two spheroid model shapes for polluted dust particle system. The pollution gives rise to various light absorbing aerosol components like black carbon, brown carbon and organic carbon (comprising of HUmic-Like Substances, HULIS) in the atmosphere. The entire above discussed model shapes have been considered for the mineral dust getting polluted with (1) organic carbon (especially HULIS component) (2) Brown carbon and (3) black carbon by making a semi-external mixture with pure mineral dust. The optical properties (like Single Scattering Albedo, SSA; Asymmetry parameter, g and Extinction efficiency, Qext) of above model shapes for the polluted dust have been computed using Discrete Dipole Approximation, DDA code. For above model shapes, the SSA was found to vary depending on hematite content (0–8%) and model shape composition. For the two sphere BC-mineral dust cluster, hematite was found to be dominating absorber compared to that of black carbon as the RBC/Rdust decreases. (i.e. with increase of dust sphere size compared to black carbon sphere in the composite 2-sphere cluster). SSA was found to be very sensitivity for the hematite content when both of the spheres (i.e. mineral dust and BC) are nearly of same size. The two spheroid system composed of organic carbon and dust with 0% hematite (OCD'-0) showed the maximum deviation of SSA (i.e.~5%) compared to the two sphere system of same composition and hematite content (OCD-0 ). Increase in hematite from 0 to 8% caused maximum SSA deviation of ~20% for two sphere organic carbon-dust system (OCD) while the same has been observed to be ~18% for two spheroid organic carbon-dust system (OCD'). SSA was found to be more sensitive to hematite content than that of particle shape. Compared to SSA, Asymmetry parameter, g was found to be more sensitive towards particle shape. For three-sphere model shapes with 0% hematite composed of black carbon-dust-dust (BCDD-0), brown carbon-dust-dust (BrCDD-0 ) and organic carbon-dust-dust (OCDD-0), the deviation of SSA and g relative to conjugate black carbon (BC), brown carbon (BrC) and organic carbon (OC) spheres are ~68% and ~31%, ~83% and ~31% and ~70% and ~33%, respectively. Thus modeled polluted dust optics will provide a better basis for radiative forcing estimation and many sensitivity studies.


2011 ◽  
Vol 11 (14) ◽  
pp. 7155-7170 ◽  
Author(s):  
Y. Liu ◽  
W. Wu ◽  
M. P. Jensen ◽  
T. Toto

Abstract. This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM) Program at the Great Southern Plains (SGP) site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997–2009) sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual) variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.


2006 ◽  
Vol 19 (17) ◽  
pp. 4344-4359 ◽  
Author(s):  
Markus Stowasser ◽  
Kevin Hamilton

Abstract The relations between local monthly mean shortwave cloud radiative forcing and aspects of the resolved-scale meteorological fields are investigated in hindcast simulations performed with 12 of the global coupled models included in the model intercomparison conducted as part of the preparation for Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In particular, the connection of the cloud forcing over tropical and subtropical ocean areas with resolved midtropospheric vertical velocity and with lower-level relative humidity are investigated and compared among the models. The model results are also compared with observational determinations of the same relationships using satellite data for the cloud forcing and global reanalysis products for the vertical velocity and humidity fields. In the analysis the geographical variability in the long-term mean among all grid points and the interannual variability of the monthly mean at each grid point are considered separately. The shortwave cloud radiative feedback (SWCRF) plays a crucial role in determining the predicted response to large-scale climate forcing (such as from increased greenhouse gas concentrations), and it is thus important to test how the cloud representations in current climate models respond to unforced variability. Overall there is considerable variation among the results for the various models, and all models show some substantial differences from the comparable observed results. The most notable deficiency is a weak representation of the cloud radiative response to variations in vertical velocity in cases of strong ascending or strong descending motions. While the models generally perform better in regimes with only modest upward or downward motions, even in these regimes there is considerable variation among the models in the dependence of SWCRF on vertical velocity. The largest differences between models and observations when SWCRF values are stratified by relative humidity are found in either very moist or very dry regimes. Thus, the largest errors in the model simulations of cloud forcing are prone to be in the western Pacific warm pool area, which is characterized by very moist strong upward currents, and in the rather dry regions where the flow is dominated by descending mean motions.


2007 ◽  
Vol 88 (7) ◽  
pp. 1059-1084 ◽  
Author(s):  
Steven J. Ghan ◽  
Stephen E. Schwartz

Aerosol particles in the lower atmosphere exert a substantial influence on climate and climate change through a variety of complex mechanisms. Consequently, there is a need to represent these influences in global climate models, and models have begun to include representations of these influences. However, the present treatment of aerosols in global climate models is highly simplified, omitting many processes and feedbacks that are thought to be climatically important. Thus, there is need for substantial improvement. Here we describe the strategy of the U.S. Department of Energy for improving representation of the properties, processes, and effects of tropospheric aerosols in global climate models. The strategy begins with a foundation of field and laboratory measurements that provide the basis for modules describing specific aerosol properties and processes. These modules are then integrated into regional aerosol models, which are evaluated by comparison with field measurements. Issues of scale are then addressed so that the modules can be applied to global aerosol models, which are evaluated by comparison with satellite retrievals and other observations. Finally, the validated set of modules is applied in global climate models for multicentury simulations. This strategy is expected to be applied to successive generations of global climate models.


2017 ◽  
Vol 17 (7) ◽  
pp. 4451-4475 ◽  
Author(s):  
Ilissa B. Ocko ◽  
Paul A. Ginoux

Abstract. Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud–Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jeremy M. Klavans ◽  
Mark A. Cane ◽  
Amy C. Clement ◽  
Lisa N. Murphy

AbstractThe North Atlantic Oscillation (NAO) is predictable in climate models at near-decadal timescales. Predictive skill derives from ocean initialization, which can capture variability internal to the climate system, and from external radiative forcing. Herein, we show that predictive skill for the NAO in a very large uninitialized multi-model ensemble is commensurate with previously reported skill from a state-of-the-art initialized prediction system. The uninitialized ensemble and initialized prediction system produce similar levels of skill for northern European precipitation and North Atlantic SSTs. Identifying these predictable components becomes possible in a very large ensemble, confirming the erroneously low signal-to-noise ratio previously identified in both initialized and uninitialized climate models. Though the results here imply that external radiative forcing is a major source of predictive skill for the NAO, they also indicate that ocean initialization may be important for particular NAO events (the mid-1990s strong positive NAO), and, as previously suggested, in certain ocean regions such as the subpolar North Atlantic ocean. Overall, we suggest that improving climate models’ response to external radiative forcing may help resolve the known signal-to-noise error in climate models.


2016 ◽  
Vol 16 (15) ◽  
pp. 10083-10095 ◽  
Author(s):  
Nicholas A. Davis ◽  
Dian J. Seidel ◽  
Thomas Birner ◽  
Sean M. Davis ◽  
Simone Tilmes

Abstract. Model simulations of future climates predict a poleward expansion of subtropical arid climates at the edges of Earth's tropical belt, which would have significant environmental and societal impacts. This expansion may be related to the poleward shift of the Hadley cell edges, where subsidence stabilizes the atmosphere and suppresses precipitation. Understanding the primary drivers of tropical expansion is hampered by the myriad forcing agents in most model projections of future climate. While many previous studies have examined the response of idealized models to simplified climate forcings and the response of comprehensive climate models to more complex climate forcings, few have examined how comprehensive climate models respond to simplified climate forcings. To shed light on robust processes associated with tropical expansion, here we examine how the tropical belt width, as measured by the Hadley cell edges, responds to simplified forcings in the Geoengineering Model Intercomparison Project (GeoMIP). The tropical belt expands in response to a quadrupling of atmospheric carbon dioxide concentrations and contracts in response to a reduction in the solar constant, with a range of a factor of 3 in the response among nine models. Models with more surface warming and an overall stronger temperature response to quadrupled carbon dioxide exhibit greater tropical expansion, a robust result in spite of inter-model differences in the mean Hadley cell width, parameterizations, and numerical schemes. Under a scenario where the solar constant is reduced to offset an instantaneous quadrupling of carbon dioxide, the Hadley cells remain at their preindustrial width, despite the residual stratospheric cooling associated with elevated carbon dioxide levels. Quadrupled carbon dioxide produces greater tropical belt expansion in the Southern Hemisphere than in the Northern Hemisphere. This expansion is strongest in austral summer and autumn. Ozone depletion has been argued to cause this pattern of changes in observations and model experiments, but the results here indicate that seasonally and hemispherically asymmetric tropical expansion can be a basic response of the general circulation to climate forcings.


2017 ◽  
Vol 13 (8) ◽  
pp. 1037-1048 ◽  
Author(s):  
Henrik Carlson ◽  
Rodrigo Caballero

Abstract. Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2–thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has  ∼  11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.


2017 ◽  
Author(s):  
Yuan Cheng ◽  
Shao-Meng Li ◽  
Mark Gordon ◽  
Peter Liu

Abstract. Black carbon (BC) plays an important role in the Earth’s climate system. However, parameterization of BC size and mixing state have not been well addressed in aerosol-climate models, introducing substantial uncertainties into the estimation of radiative forcing by BC. In this study, we focused on BC emissions from the massive oil sands (OS) industry in northern Alberta, based on an aircraft campaign conducted over the Athabasca OS region in 2013. A total of 14 flights were made over the OS source area, in which the aircraft was typically flown in a 4- or 5-sided polygon pattern along flight tracks encircling an OS facility. Another 3 flights were performed downwind of the OS source area, each of which involved at least three intercepting locations where the well-mixed OS plume was measured along flight tracks perpendicular to the wind direction. Comparable size distributions were observed for refractory black carbon (rBC) over and downwind of the OS facilities, with rBC mass median diameters (MMD) between ~ 135 and 145 nm that were characteristic of fresh urban emissions. This MMD range corresponded to rBC number median diameters (NMD) of ~ 60–70 nm, approximately 100 % higher than the NMD settings in some aerosol-climate models. The typical in- and out-of-plume segments of a flight, which had different rBC concentrations and photochemical ages, showed consistent rBC size distributions. Moreover, rBC size distributions remained unchanged at different downwind distances from the source area, suggesting that atmospheric aging would not necessarily change rBC size distribution. However, aging indeed influenced rBC mixing state. Coating thickness for rBC cores in the diameter range of 130–160 nm was nearly doubled within three hours when the OS plume was transported over a distance of 90 km from the source area.


Sign in / Sign up

Export Citation Format

Share Document