scholarly journals Impact of Assimilating Advanced Himawari Imager Channel 16 Data on Precipitation Prediction over the Haihe River Basin

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1253
Author(s):  
Hongxiang Ouyang ◽  
Zhengkun Qin ◽  
Juan Li

Assimilation of high-resolution geostationary satellite data is of great value for precise precipitation prediction in regional basins. The operational geostationary satellite imager carried by the Himawari-8 satellite, Advanced Himawari Imager (AHI), has two additional water vapor channels and four other channels compared with its predecessor, MTSAT-2. However, due to the uncertainty in surface parameters, AHI surface-sensitive channels are usually not assimilated over land, except for the three water vapor channels. Previous research showed that the brightness temperature of AHI channel 16 is much more sensitive to the lower-tropospheric temperature than to surface emissivity, which is similar to the three water vapor channels 8–10. As a follow-up work, this paper evaluates the effectiveness of assimilating brightness temperature observations over land from both the three AHI water vapor channels and channel 16 to improve watershed precipitation forecasting through both case analysis (in the Haihe River basin, China) and batch tests. It is found that assimilating AHI channel 16 can improve the upstream near-surface atmospheric temperature forecast, which in turn affects the development of downstream weather systems. The precipitation forecasting test results indicate that adding the terrestrial observations of channel 16 to the assimilation of AHI data can improve short-term precipitation forecasting in the basin.

2014 ◽  
Vol 6 (2) ◽  
pp. 341-351 ◽  
Author(s):  
Chun Chang ◽  
Ping Feng ◽  
Fawen Li ◽  
Yunming Gao

Based on the Haihe river basin National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data from 1948 to 2010 and the precipitation data of 53 hydrological stations during 1957–2010, this study analyzed the variation of water vapor content and precipitation, and investigated the correlation between them using several statistical methods. The results showed that the annual water vapor content decreased drastically from 1948 to 2010. It was comparatively high from the late 1940s to the late 1960s and depreciated from the early 1970s. From the southeast to the northwest of the Haihe river basin, there was a decrease in water vapor content. For vertical distribution, water vapor content from the ground to 700 hPa pressure level accounted for 72.9% of the whole atmospheric layer, which indicated that the water vapor of the Haihe river basin was mainly in the air close to the ground. The precipitation in the Haihe river basin during 1957–2010 decreased very slightly. According to the correlation analysis, the precipitation and water vapor content changes showed statistically positive correlation, in addition, their break points were both in the 1970s. Furthermore, the high consistency between the precipitation efficiency and precipitation demonstrates that water vapor content is one of the important factors in the formation of precipitation.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1798
Author(s):  
Xu Wu ◽  
Su Li ◽  
Bin Liu ◽  
Dan Xu

The spatio-temporal variation of precipitation under global warming had been a research hotspot. Snowfall is an important part of precipitation, and its variabilities and trends in different regions have received great attention. In this paper, the Haihe River Basin is used as a case, and we employ the K-means clustering method to divide the basin into four sub-regions. The double temperature threshold method in the form of the exponential equation is used in this study to identify precipitation phase states, based on daily temperature, snowfall, and precipitation data from 43 meteorological stations in and around the Haihe River Basin from 1960 to 1979. Then, daily snowfall data from 1960 to 2016 are established, and the spatial and temporal variation of snowfall in the Haihe River Basin are analyzed according to the snowfall levels as determined by the national meteorological department. The results evalueted in four different zones show that (1) the snowfall at each meteorological station can be effectively estimated at an annual scale through the exponential equation, for which the correlation coefficient of each division is above 0.95, and the relative error is within 5%. (2) Except for the average snowfall and light snowfall, the snowfall and snowfall days of moderate snow, heavy snow, and snowstorm in each division are in the order of Zones III > IV > I > II. (3) The snowfall and the number of snowfall days at different levels both show a decreasing trend, except for the increasing trend of snowfall in Zone I. (4) The interannual variation trend in the snowfall at the different levels are not obvious, except for Zone III, which shows a significant decreasing trend.


2018 ◽  
Vol 36 (1) ◽  
pp. 79-92
Author(s):  
Fuqiang Yang ◽  
Li Dan ◽  
Jing Peng ◽  
Xiujing Yang ◽  
Yueyue Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document