scholarly journals A Gaussian Process Method with Uncertainty Quantification for Air Quality Monitoring

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1344
Author(s):  
Peng Wang ◽  
Lyudmila Mihaylova ◽  
Rohit Chakraborty ◽  
Said Munir ◽  
Martin Mayfield ◽  
...  

The monitoring and forecasting of particulate matter (e.g., PM2.5) and gaseous pollutants (e.g., NO, NO2, and SO2) is of significant importance, as they have adverse impacts on human health. However, model performance can easily degrade due to data noises, environmental and other factors. This paper proposes a general solution to analyse how the noise level of measurements and hyperparameters of a Gaussian process model affect the prediction accuracy and uncertainty, with a comparative case study of atmospheric pollutant concentrations prediction in Sheffield, UK, and Peshawar, Pakistan. The Neumann series is exploited to approximate the matrix inverse involved in the Gaussian process approach. This enables us to derive a theoretical relationship between any independent variable (e.g., measurement noise level, hyperparameters of Gaussian process methods), and the uncertainty and accuracy prediction. In addition, it helps us to discover insights on how these independent variables affect the algorithm evidence lower bound. The theoretical results are verified by applying a Gaussian processes approach and its sparse variants to air quality data forecasting.

Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 76
Author(s):  
Estrella Lucena-Sánchez ◽  
Guido Sciavicco ◽  
Ionel Eduard Stan

Air quality modelling that relates meteorological, car traffic, and pollution data is a fundamental problem, approached in several different ways in the recent literature. In particular, a set of such data sampled at a specific location and during a specific period of time can be seen as a multivariate time series, and modelling the values of the pollutant concentrations can be seen as a multivariate temporal regression problem. In this paper, we propose a new method for symbolic multivariate temporal regression, and we apply it to several data sets that contain real air quality data from the city of Wrocław (Poland). Our experiments show that our approach is superior to classical, especially symbolic, ones, both in statistical performances and the interpretability of the results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ritwik Nigam ◽  
Kanvi Pandya ◽  
Alvarinho J. Luis ◽  
Raja Sengupta ◽  
Mahender Kotha

AbstractOn January 30, 2020, India recorded its first COVID-19 positive case in Kerala, which was followed by a nationwide lockdown extended in four different phases from 25th March to 31st May, 2020, and an unlock period thereafter. The lockdown has led to colossal economic loss to India; however, it has come as a respite to the environment. Utilizing the air quality index (AQI) data recorded during this adverse time, the present study is undertaken to assess the impact of lockdown on the air quality of Ankleshwar and Vapi, Gujarat, India. The AQI data obtained from the Central Pollution Control Board was assessed for four lockdown phases. We compared air quality data for the unlock phase with a coinciding period in 2019 to determine the changes in pollutant concentrations during the lockdown, analyzing daily AQI data for six pollutants (PM10, PM2.5, CO, NO2, O3, and SO2). A meta-analysis of continuous data was performed to determine the mean and standard deviation of each lockdown phase, and their differences were computed in percentage in comparison to 2019; along with the linear correlation analysis and linear regression analysis to determine the relationship among the air pollutants and their trend for the lockdown days. The results revealed different patterns of gradual to a rapid reduction in most of the pollutant concentrations (PM10, PM2.5, CO, SO2), and an increment in ozone concentration was observed due to a drastic reduction in NO2 by 80.18%. Later, increases in other pollutants were also observed as the restrictions were eased during phase-4 and unlock 1. The comparison between the two cities found that factors like distance from the Arabian coast and different industrial setups played a vital role in different emission trends.


2013 ◽  
Vol 13 (14) ◽  
pp. 6845-6875 ◽  
Author(s):  
Y. Zhang ◽  
K. Sartelet ◽  
S. Zhu ◽  
W. Wang ◽  
S.-Y. Wu ◽  
...  

Abstract. An offline-coupled model (WRF/Polyphemus) and an online-coupled model (WRF/Chem-MADRID) are applied to simulate air quality in July 2001 at horizontal grid resolutions of 0.5° and 0.125° over Western Europe. The model performance is evaluated against available surface and satellite observations. The two models simulate different concentrations in terms of domainwide performance statistics, spatial distribution, temporal variations, and column abundance. WRF/Chem-MADRID at 0.5° gives higher values than WRF/Polyphemus for the domainwide mean and over polluted regions in Central and southern Europe for all surface concentrations and column variables except for the tropospheric ozone residual (TOR). Compared with observations, WRF/Polyphemus gives better statistical performance for daily HNO3, SO2, and NO2 at the European Monitoring and Evaluation Programme (EMEP) sites, maximum 1 h O3 at the AirBase sites, PM2.5 at the AirBase sites, maximum 8 h O3 and PM10 composition at all sites, column abundance of CO, NO2, TOR, and aerosol optical depth (AOD), whereas WRF/Chem-MADRID gives better statistical performance for NH3, hourly SO2, NO2, and O3 at the AirBase and BDQA (Base de données de la qualité de l'air) sites, maximum 1 h O3 at the BDQA and EMEP sites, and PM10 at all sites. WRF/Chem-MADRID generally reproduces well the observed high hourly concentrations of SO2 and NO2 at most sites except for extremely high episodes at a few sites, and WRF/Polyphemus performs well for hourly SO2 concentrations at most rural or background sites where pollutant levels are relatively low, but it underpredicts the observed hourly NO2 concentrations at most sites. Both models generally capture well the daytime maximum 8 h O3 concentrations and diurnal variations of O3 with more accurate peak daytime and minimal nighttime values by WRF/Chem-MADRID, but neither model reproduces extremely low nighttime O3 concentrations at several urban and suburban sites due to underpredictions of NOx and thus insufficient titration of O3 at night. WRF/Polyphemus gives more accurate concentrations of PM2.5, and WRF/Chem-MADRID reproduces better the observations of PM10 concentrations at all sites. The differences between model predictions and observations are mostly caused by inaccurate representations of emissions of gaseous precursors and primary PM species, as well as biases in the meteorological predictions. The differences in model predictions are caused by differences in the heights of the first model layers and thickness of each layer that affect vertical distributions of emissions, model treatments such as dry/wet deposition, heterogeneous chemistry, and aerosol and cloud, as well as model inputs such as emissions of soil dust and sea salt and chemical boundary conditions of CO and O3 used in both models. WRF/Chem-MADRID shows a higher sensitivity to grid resolution than WRF/Polyphemus at all sites. For both models, the use of a finer grid resolution generally leads to an overall better statistical performance for most variables, with greater spatial details and an overall better agreement in temporal variations and magnitudes at most sites. The use of online biogenic volatile organic compound (BVOC) emissions gives better statistical performance for hourly and maximum 8 h O3 and PM2.5 and generally better agreement with their observed temporal variations at most sites. Because it is an online model, WRF/Chem-MADRID offers the advantage of accounting for various feedbacks between meteorology and chemical species. However, this model comparison suggests that atmospheric pollutant concentrations are most sensitive in state-of-the-science air quality models to vertical structure, inputs, and parameterizations for dry/wet removal of gases and particles in the model.


2015 ◽  
Vol 15 (20) ◽  
pp. 28749-28792 ◽  
Author(s):  
A. J. Prenni ◽  
D. E. Day ◽  
A. R. Evanoski-Cole ◽  
B. C. Sive ◽  
A. Hecobian ◽  
...  

Abstract. The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013–2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than four months.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Andrew Venter ◽  
Sandra De Vos

Various local and international research has been published on the effects of COVID-19 lockdown on ambient air quality. In most cases, a reduction in ambient NOx and PM concentrations have been observed with varying changes in ambient SO2 levels. Secunda, located in the Highveld Priority Area in Mpumalanga, South Africa is known for its large industrial facilities utilising coal as primary feedstock. The towns of Secunda and eMbalenhle provide the majority of the workforce to Sasol and has therefore been the focus of this study. The ambient air quality in the Secunda region was assessed due to the changes in human behaviour during lockdown, familiarity with the Sasol facility and the strategic locations of ambient air quality stations.Results show a clear decrease in ambient CO, NO2 and PM concentrations, especially during the first two weeks of lockdown. Only subtle changes were observed for ambient H2S and SO2 pollutant concentrations at the ambient monitoring stations. An increasing trend in all ambient species was observed towards the end and post lockdown, in contrast to declining ambient temperatures with the onset of winter. This is also contrary to the reduction in emissions from the factory that conducted annual maintenance in the month following lockdown (phase shutdown). This article concludes that human behaviour has a material local ambient impact on CO, NO2 and PM pollutant species, while H2S concentration profiles are more directly related to the industrial complex’s levels of activity. Ambient SO2 trends did not show a similar correlation with the facility’s activities (as H2S), but a stronger correlation was observed with the diverse local and regional sources in close proximity to Secunda and eMbalenhle. The influence of better dispersion especially on a local scale, brought about by more effective emission heights, is considered material. Moreover, meteorological factors, on local air quality, has been shown to be a material contributor to observed ambient air quality levels in the study domain


Author(s):  
Oriol Teixidó ◽  
Aurelio Tobías ◽  
Jordi Massagué ◽  
Ruqaya Mohamed ◽  
Rashed Ekaabi ◽  
...  

AbstractThe preventive and cautionary measures taken by the UAE and Abu Dhabi governments to reduce the spread of the coronavirus disease (COVID-19) and promote social distancing have led to a reduction of mobility and a modification of economic and social activities. This paper provides statistical analysis of the air quality data monitored by the Environment Agency – Abu Dhabi (EAD) during the first 10 months of 2020, comparing the different stages of the preventive measures. Ground monitoring data is compared with satellite images and mobility indicators. The study shows a drastic decrease during lockdown in the concentration of the gaseous pollutants analysed (NO2, SO2, CO, and C6H6) that aligns with the results reported in other international cities and metropolitan areas. However, particulate matter (PM10 and PM2.5) averaged concentrations followed a markedly different trend from the gaseous pollutants, indicating a larger influence from natural events (sand and dust storms) and other anthropogenic sources. The ozone (O3) levels increased during the lockdown, showing the complexity of O3 formation. The end of lockdown led to an increase of the mobility and the air pollution; however, air pollutant concentrations remained in lower levels than during the same period of 2019. The results in this study show the large impact of human activities on the quality of air and present an opportunity for policymakers and decision-makers to design stimulus packages to overcome the economic slow-down, with strategies to accelerate the transition to resilient, low-emission economies and societies more connected to the nature that protect human health and the environment.


2016 ◽  
Vol 16 (3) ◽  
pp. 1401-1416 ◽  
Author(s):  
A. J. Prenni ◽  
D. E. Day ◽  
A. R. Evanoski-Cole ◽  
B. C. Sive ◽  
A. Hecobian ◽  
...  

Abstract. The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013–2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long-term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than 4 months.


2021 ◽  
Author(s):  
Rachael Duncan ◽  
Paul Young ◽  
Chris Nemeth

<p>Despite efforts to reduce pollutant emissions in the UK, between 28,000 and 36,000 deaths a year are attributable to poor air quality and ambient air pollution is considered the UK’s biggest environmental threat to health. Characterising, quantifying and understanding air quality variability and the importance of different drivers is essential to guide policies to address the issue and its risks, for both the short and long term. Here we investigate a statistical modelling approach to characterise air quality variability and its key drivers, using Kalman filters. Kalman filters are a commonly used tool in air quality modelling but are seldom used in a statistic framework that accounts for uncertainty in a principled way. Kalman filtering allows us to take data which is noisy or partially recorded, such as air quality data, and help reveal the true underlying trends and dynamics of the data. This allows us to combine measurement information with the statistical model to obtain an air quality forecast, using the measurement information to reduce the statistical model errors and improve model results. We explore this approach using air quality monitoring data from the UK Automatic Urban and Rural Network (AURN), which consists of 150 sites focussed mainly in populated areas, leaving large areas unmonitored. AURN is primarily used for compliance reporting against national and European air quality standards and targets. Eventually, our aim is to provide short-term forecasts of pollutant levels from AURN, comparing this against process model forecasts and ultimately providing an optimised combination of process model, statistical model and measurement.   </p>


2009 ◽  
Vol 48 (5) ◽  
pp. 945-961 ◽  
Author(s):  
Stephen F. Mueller

Abstract Daily (24 h) and hourly air quality data at several sites are used to examine the performance of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)–Community Multiscale Air Quality Model (CMAQ) system over a 3-month period in 2003. A coarse (36 km) model grid was expected to provide relatively poor performance for ozone and comparatively better performance for fine particles, especially the more regional sulfate and carbonaceous aerosols. However, results were different from this expectation. Modeling showed significant skill for ozone at several locations but very little skill for particulate species. Modeling did poorly identifying surface wind directions associated with the highest and lowest pollutant exposures at most sites, although results varied widely by location. Model skill appeared to be better for ozone when spatial–temporal (S–T) patterns were examined, due in part to the ability of the model to reproduce much of the temporal variance associated with the diurnal photochemical cycle. At some sites the modeling even performed well in replicating the directional variability of hourly ozone despite relatively low spatial resolution. MM5–CMAQ spatial (directional) representation of 24-h-average particulate data was not good in most cases, but model skill improved somewhat when hourly data were examined. Modeling exhibited skill for sulfate at only one of nine sites using 24-h data averaged by daily resultant wind direction, at two of six sites when hourly data were averaged by direction, and at four of six sites when the combined spatial and temporal variance of sulfate was examined. Results were generally poorer for total carbon aerosol mass and total mass of particulate matter with diameter of less than 2.5 μm (PM2.5). The primary result of this study is that an S–T analysis of pollutant patterns reveals model performance insights that cannot be realized by only examining model error statistics as is typically done for regulatory applications. Use of this S–T analysis technique is recommended for better understanding model performance during longer simulation periods, especially when using grids of finer spatial resolution for applications supporting local air quality management studies. Of course, using this approach will require measuring semicontinuous fine particle data at more sites and for longer periods.


Sign in / Sign up

Export Citation Format

Share Document