scholarly journals Surface Urban Heat Island Assessment of a Cold Desert City: A Case Study over the Isfahan Metropolitan Area of Iran

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1368
Author(s):  
Alireza Karimi ◽  
Pir Mohammad ◽  
Sadaf Gachkar ◽  
Darya Gachkar ◽  
Antonio García-Martínez ◽  
...  

This study investigates the diurnal, seasonal, monthly and temporal variation of land surface temperature (LST) and surface urban heat island intensity (SUHII) over the Isfahan metropolitan area, Iran, during 2003–2019 using MODIS data. It also examines the driving factors of SUHII like cropland, built-up areas (BI), the urban–rural difference in enhanced vegetation index (ΔEVI), evapotranspiration (ΔET), and white sky albedo (ΔWSA). The results reveal the presence of urban cool islands during the daytime and urban heat islands at night. The maximum SUHII was observed at 22:30 pm, while the minimum was at 10:30 am. The summer months (June to September) show higher SUHII compared to the winter months (February to May). The daytime SUHII demonstrates a robust positive correlation with cropland and ΔWSA, and a negative correlation with ΔET, ΔEVI, and BI. The nighttime SUHII displays a negative correlation with ΔET and ΔEVI.

2017 ◽  
Vol 11 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Paul Macarof ◽  
Florian Statescu

Abstract This study compares the normalized difference built-up index (NDBI) and normalized difference vegetation index (NDVI) as indicators of surface urban heat island effects in Landsat-8 OLI imagery by investigating the relationships between the land surface temperature (LST), NDBI and NDVI. The urban heat island (UHI) represents the phenomenon of higher atmospheric and surface temperatures occurring in urban area or metropolitan area than in the surrounding rural areas due to urbanization. With the development of remote sensing technology, it has become an important approach to urban heat island research. Landsat data were used to estimate the LST, NDBI and NDVI from four seasons for Iasi municipality area. This paper indicates than there is a strong linear relationship between LST and NDBI, whereas the relationship between LST and NDVI varies by season. This paper suggests, NDBI is an accurate indicator of surface UHI effects and can be used as a complementary metric to the traditionally applied NDVI.


Author(s):  
Tao Chen ◽  
Anchang Sun ◽  
Ruiqing Niu

Man-made materials now cover a dominant proportion of urban areas, and such conditions not only change the absorption of solar radiation, but also the allocation of the solar radiation and cause the surface urban heat island effect, which is considered a serious problem associated with the deterioration of urban environments. Although numerous studies have been performed on surface urban heat islands, only a few have focused on the effect of land cover changes on surface urban heat islands over a long time period. Using six Landsat image scenes of the Metropolitan Development Area of Wuhan, our experiment (1) applied a mapping method for normalized land surface temperatures with three land cover fractions, which were impervious surfaces, non-chlorophyllous vegetation and soil and vegetation fractions, and (2) performed a fitting analysis of fierce change areas in the surface urban heat island intensity based on a time trajectory. Thematic thermal maps were drawn to analyze the distribution of and variations in the surface urban heat island in the study area. A Multiple Endmember Spectral Mixture Analysis was used to extract the land cover fraction information. Then, six ternary triangle contour graphics were drawn based on the land surface temperature and land cover fraction information. A time trajectory was created to summarize the changing characteristics of the surface urban heat island intensity. A fitting analysis was conducted for areas showing fierce changes in the urban heat intensity. Our results revealed that impervious surfaces had the largest impacts on surface urban heat island intensity, followed by the non-chlorophyllous vegetation and soil fraction. Moreover, the results indicated that the vegetation fraction can alleviate the occurrence of surface urban heat islands. These results reveal the impact of the land cover fractions on surface urban heat islands. Urban expansion generates impervious artificial objects that replace pervious natural objects, which causes an increase in land surface temperature and results in a surface urban heat island.


2021 ◽  
Vol 10 (6) ◽  
pp. 416
Author(s):  
Nagihan Aslan ◽  
Dilek Koc-San

The aims of this study were to determine surface urban heat island (SUHI) effects and to analyze the land use/land cover (LULC) and land surface temperature (LST) changes for 11 time periods from the years 2002 to 2020 using Landsat time series images. Bursa, which is the fourth largest metropolitan city in Turkey, was selected as the study area, and Landsat multi-temporal images of the summer season were used. Firstly, the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), modified normalized difference water index (MNDWI) and index-based built-up index (IBI) were created using the bands of Landsat images, and LULC classes were determined by applying automatic thresholding. The LST values were calculated using thermal images and SUHI effects were determined. The results show that NDVI, SAVI, MNDWI and IBI indices can be used effectively for the determination of the urban, vegetation and water LULC classes for SUHI studies, with overall classification accuracies between 89.60% and 95.90% for the used images. According to the obtained results, generally the LST values increased for almost all land cover areas between the years 2002 and 2020. The SUHI magnitudes were computed by using two methods, and it was found that there was an important increase in the 18-year time period.


2021 ◽  
Vol 13 (16) ◽  
pp. 3177
Author(s):  
Talha Hassan ◽  
Jiahua Zhang ◽  
Foyez Ahmed Prodhan ◽  
Til Prasad Pangali Sharma ◽  
Barjeece Bashir

Urbanization is an increasing phenomenon around the world, causing many adverse effects in urban areas. Urban heat island is are of the most well-known phenomena. In the present study, surface urban heat islands (SUHI) were studied for seven megacities of the South Asian countries from 2000–2019. The urban thermal environment and relationship between land surface temperature (LST), land use landcover (LULC) and vegetation were examined. The connection was explored with remote-sensing indices such as urban thermal field variance (UTFVI), surface urban heat island intensity (SUHII) and normal difference vegetation index (NDVI). LULC maps are classified using a CART machine learning classifier, and an accuracy table was generated. The LULC change matrix shows that the vegetated areas of all the cities decreased with an increase in the urban areas during the 20 years. The average LST in the rural areas is increasing compared to the urban core, and the difference is in the range of 1–2 (°C). The SUHII linear trend is increasing in Delhi, Karachi, Kathmandu, and Thimphu, while decreasing in Colombo, Dhaka, and Kabul from 2000–2019. UTFVI has shown the poor ecological conditions in all urban buffers due to high LST and urban infrastructures. In addition, a strong negative correlation between LST and NDVI can be seen in a range of −0.1 to −0.6.


2020 ◽  
Vol 9 (12) ◽  
pp. 726
Author(s):  
Md. Omar Sarif ◽  
Bhagawat Rimal ◽  
Nigel E. Stork

More than half of the world’s populations now live in rapidly expanding urban and its surrounding areas. The consequences for Land Use/Land Cover (LULC) dynamics and Surface Urban Heat Island (SUHI) phenomena are poorly understood for many new cities. We explore this issue and their inter-relationship in the Kathmandu Valley, an area of roughly 694 km2, at decadal intervals using April (summer) Landsat images of 1988, 1998, 2008, and 2018. LULC assessment was made using the Support Vector Machine algorithm. In the Kathmandu Valley, most land is either natural vegetation or agricultural land but in the study period there was a rapid expansion of impervious surfaces in urban areas. Impervious surfaces (IL) grew by 113.44 km2 (16.34% of total area), natural vegetation (VL) by 6.07 km2 (0.87% of total area), resulting in the loss of 118.29 km2 area from agricultural land (17.03% of total area) during 1988–2018. At the same time, the average land surface temperature (LST) increased by nearly 5–7 °C in the city and nearly 3–5 °C at the city boundary. For different LULC classes, the highest mean LST increase during 1988–2018 was 7.11 °C for IL with the lowest being 3.18 °C for VL although there were some fluctuations during this time period. While open land only occupies a small proportion of the landscape, it usually had higher mean LST than all other LULC classes. There was a negative relationship both between LST and Normal Difference Vegetation Index (NDVI) and LST and Normal Difference Moisture Index (NDMI), respectively, and a positive relationship between LST and Normal Difference Built-up Index (NDBI). The result of an urban–rural gradient analysis showed there was sharp decrease of mean LST from the city center outwards to about 15 kms because the NDVI also sharply increased, especially in 2008 and 2018, which clearly shows a surface urban heat island effect. Further from the city center, around 20–25 kms, mean LST increased due to increased agriculture activity. The population of Kathmandu Valley was 2.88 million in 2016 and if the growth trend continues then it is predicted to reach 3.85 million by 2035. Consequently, to avoid the critical effects of increasing SUHI in Kathmandu it is essential to improve urban planning including the implementation of green city technologies.


2018 ◽  
Vol 11 (1) ◽  
pp. 48 ◽  
Author(s):  
Decheng Zhou ◽  
Jingfeng Xiao ◽  
Stefania Bonafoni ◽  
Christian Berger ◽  
Kaveh Deilami ◽  
...  

The surface urban heat island (SUHI), which represents the difference of land surface temperature (LST) in urban relativity to neighboring non-urban surfaces, is usually measured using satellite LST data. Over the last few decades, advancements of remote sensing along with spatial science have considerably increased the number and quality of SUHI studies that form the major body of the urban heat island (UHI) literature. This paper provides a systematic review of satellite-based SUHI studies, from their origin in 1972 to the present. We find an exponentially increasing trend of SUHI research since 2005, with clear preferences for geographic areas, time of day, seasons, research foci, and platforms/sensors. The most frequently studied region and time period of research are China and summer daytime, respectively. Nearly two-thirds of the studies focus on the SUHI/LST variability at a local scale. The Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+)/Thermal Infrared Sensor (TIRS) and Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) are the two most commonly-used satellite sensors and account for about 78% of the total publications. We systematically reviewed the main satellite/sensors, methods, key findings, and challenges of the SUHI research. Previous studies confirm that the large spatial (local to global scales) and temporal (diurnal, seasonal, and inter-annual) variations of SUHI are contributed by a variety of factors such as impervious surface area, vegetation cover, landscape structure, albedo, and climate. However, applications of SUHI research are largely impeded by a series of data and methodological limitations. Lastly, we propose key potential directions and opportunities for future efforts. Besides improving the quality and quantity of LST data, more attention should be focused on understudied regions/cities, methods to examine SUHI intensity, inter-annual variability and long-term trends of SUHI, scaling issues of SUHI, the relationship between surface and subsurface UHIs, and the integration of remote sensing with field observations and numeric modeling.


Sign in / Sign up

Export Citation Format

Share Document