scholarly journals Impacts of Climate and Environmental Change on Bean Cultivation in China

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1591
Author(s):  
Sidan Li ◽  
Shibing You ◽  
Ze Song ◽  
Li Zhang ◽  
Yixuan Liu

The impact of human-caused environmental pollution and global climate change on the economy and society can no longer be underestimated. Agriculture is the most directly and vulnerably affected sector by climate change. This study used beans, the food crop with the largest supply and demand gap in China, as the research object and established a panel spatial error model consisting of multiple indicators of four factors: climate environment, economic market, human planting behavior and technical development level of 25 provinces in China from 2005 to 2019 to explore the impact of climate environmental changes on the yields of beans. The study shows that: (1) The increase in precipitation has a significant positive effect on bean yields; however, the increase in temperature year by year has a significant negative effect on bean yields; (2) carbon emissions do not directly affect bean production at present but may have an indirect impact on bean production; (3) artificial irrigation and fertilization behavior on bean production has basically reached saturation, making it difficult to continue to increase bean yields and (4) the development of technology and human activity is a mixed blessing, and the consequent inhibiting effects on bean production are currently unable to offset their promoting effects. Thus, when it comes to bean cultivation, China should focus mainly on the overall impact of environmental changes on its production, rather than technical enhancements such as irrigation and fertilization.

2013 ◽  
Vol 838-841 ◽  
pp. 3195-3198
Author(s):  
Jian Cheng Kang ◽  
Xiaochen Su

Global Climate and Environmental Change is an international hot field. To enhance native awareness on climate change is one mission of "State Policy and Action on Climate Change 2009 in China". As an implement, a course on Global Climate and Environmental Change has been opened in Shanghai Normal University since 2005. The course includes three fields. In the first field, it is introduced on which problems and harms have been caused from Global Climate and Environmental Changes according to UNEP Year Books 2003~2013. In the second field, to introduce the Earth System and Climate-Environment Change. In the third part, the hot climate-environmental issues are analyzed and discussed. By joining this course, the students have understanding earth system science and global change. It helped students to set up the view of ecological civilization of the harmonious development between human and nature, inspire students responsibility to protect the earth. During past 8 year, there were 4 to 5 classes opening for different levels in Shanghai Normal University for each year, more than 1000 students joined the study in the course.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhang ◽  
Lu-yu Liu ◽  
Yi Liu ◽  
Man Zhang ◽  
Cheng-bang An

AbstractWithin the mountain altitudinal vegetation belts, the shift of forest tree lines and subalpine steppe belts to high altitudes constitutes an obvious response to global climate change. However, whether or not similar changes occur in steppe belts (low altitude) and nival belts in different areas within mountain systems remain undetermined. It is also unknown if these, responses to climate change are consistent. Here, using Landsat remote sensing images from 1989 to 2015, we obtained the spatial distribution of altitudinal vegetation belts in different periods of the Tianshan Mountains in Northwestern China. We suggest that the responses from different altitudinal vegetation belts to global climate change are different. The changes in the vegetation belts at low altitudes are spatially different. In high-altitude regions (higher than the forest belts), however, the trend of different altitudinal belts is consistent. Specifically, we focused on analyses of the impact of changes in temperature and precipitation on the nival belts, desert steppe belts, and montane steppe belts. The results demonstrated that the temperature in the study area exhibited an increasing trend, and is the main factor of altitudinal vegetation belts change in the Tianshan Mountains. In the context of a significant increase in temperature, the upper limit of the montane steppe in the eastern and central parts will shift to lower altitudes, which may limit the development of local animal husbandry. The montane steppe in the west, however, exhibits the opposite trend, which may augment the carrying capacity of pastures and promote the development of local animal husbandry. The lower limit of the nival belt will further increase in all studied areas, which may lead to an increase in surface runoff in the central and western regions.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yun-Hung Kuang ◽  
Yu-Fu Fang ◽  
Shau-Ching Lin ◽  
Shin-Fu Tsai ◽  
Zhi-Wei Yang ◽  
...  

Abstract Background The impact of climate change on insect resistance genes is elusive. Hence, we investigated the responses of rice near-isogenic lines (NILs) that carry resistance genes against brown planthopper (BPH) under different environmental conditions. Results We tested these NILs under three environmental settings (the atmospheric temperature with corresponding carbon dioxide at the ambient, year 2050 and year 2100) based on the Intergovernmental Panel on Climate Change prediction. Comparing between different environments, two of nine NILs that carried a single BPH-resistant gene maintained their resistance under the environmental changes, whereas two of three NILs showed gene pyramiding with two maintained BPH resistance genes despite the environmental changes. In addition, two NILs (NIL-BPH17 and NIL-BPH20) were examined in their antibiosis and antixenosis effects under these environmental changes. BPH showed different responses to these two NILs, where the inhibitory effect of NIL-BPH17 on the BPH growth and development was unaffected, while NIL-BPH20 may have lost its resistance during the environmental changes. Conclusion Our results indicate that BPH resistance genes could be affected by climate change. NIL-BPH17 has a strong inhibitory effect on BPH feeding on phloem and would be unaffected by environmental changes, while NIL-BPH20 would lose its ability during the environmental changes.


2007 ◽  
Vol 13 ◽  
pp. 149-168 ◽  
Author(s):  
Erik J. Ekdahl

Average global temperatures are predicted to rise over the next century and changes in precipitation, humidity, and drought frequency will likely accompany this global warming. Understanding associated changes in continental precipitation and temperature patterns in response to global change is an important component of long-range environmental planning. For example, agricultural management plans that account for decreased precipitation over time will be less susceptible to the effects of drought through implementation of water conservation techniques.A detailed understanding of environmental response to past climate change is key to understanding environmental changes associated with global climate change. To this end, diatoms are sensitive to a variety of limnologic parameters, including nutrient concentration, light availability, and the ionic concentration and composition of the waters that they live in (e.g. salinity). Diatoms from numerous environments have been used to reconstruct paleosalinity levels, which in turn have been used as a proxy records for regional and local paleoprecipitation. Long-term records of salinity or paleoprecipitation are valuable in reconstructing Quaternary paleoclimate, and are important in terms of developing mitigation strategies for future global climate change. High-resolution paleoclimate records are also important in groundtruthing global climate simulations, especially in regions where the consequences of global warming may be severe.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


Author(s):  
Viktoriia Sydorenko ◽  

This article is devoted to an overview of such a category of migrants as climate refugees. The author pays attention to the general characteristics of the impact of global climate change on migrants. Particular attention is paid to the disclosure of the term “climate refugee”, the reasons for the emergence of this category of people, as well as the problems of counting climate refugees. The author also provides examples for solving these problems.


2021 ◽  
Author(s):  
Marine Prieur ◽  
Alexander C. Whittaker ◽  
Fritz Schlunegger ◽  
Tor O. Sømme ◽  
Jean Braun ◽  
...  

<p>Sedimentary dynamics and fluxes are influenced by both autogenic and allogenic forcings. A better understanding of the evolution of sedimentary systems through time and space requires us to decipher, and therefore to characterise, the impact of each of these on the Earth’s landscape. Given the current increase in the concentration of atmospheric carbon, studying the impact of rapid and global climate changes is of particular importance at the present time. Such events have been clearly defined in the geologic record. Among them, the Paleocene-Eocene Thermal Maximum (PETM) has been extensively studied worldwide and represents a possible analogue of the rapid current climate warming.</p><p>The present project focuses on the Southern Pyrenees (Spain) where excellent exposures of the Paleocene-Eocene interval span a large range of depositional environments from continental to deep-marine. These conditions allow us to collect data along the whole depositional system in order to document changes in sediment fluxes and paleohydraulic conditions. Because hydrological conditions have an impact on sediment transport through hydrodynamics, paleoflow reconstructions can shed light on changes in sediment dynamics. This information is reconstructed from the statistical distributions of channel morphologies, characteristic system dimensions including bankfull channel depth and width, and grain-sizes.</p><p>With this approach, our aim is to provide both qualitative and quantitative assessments of the magnitude and extent of the perturbation of sedimentary fluxes along an entire source-to-sink system during an episode of extreme climate change. This will lead to a better understanding of the impact of abrupt climate change on earth surface systems in mid-latitudinal areas, with possible implications for current climate adaptation policy.</p><p>This research is carried out in the scope of the lead author’s PhD project and is part of the S2S-FUTURE European Marie Skłodowska-Curie ITN (Grant Agreement No 860383).</p>


Author(s):  
Mariana BĂLAN ◽  
Simona Maria STĂNESCU

The movement of people due to environment changes is not a new phenomenon. Despite this, only in the most recent 20 years, the international community has begun to acknowledge it as an unprecedented challenge in terms of sustainable resources involved. All over the world, the number of storms, droughts and floods has tripled in the last 30 years, with devastating effects on communities. The paper presents a brief analysis of global climate change in recent years and human mobility due to this phenomenon. The research is based on international regulations addressing the interdependencies between environmental change and migration. The climate risk management with impact on human mobility involves economic, political, cultural, and demographic factors. It also shows how a devastating natural disaster shapes people's mobility towards a more friendly environment protected shelter. The development of resilience community strategies implies a joint effort of communities and stakeholders in protecting human beings against effects of natural disasters.


Author(s):  
Maria Polozhikhina ◽  

Climate conditions remain one of the main risk factors for domestic agriculture, and the consequences of global climate change are ambiguous in terms of prospects for agricultural production in Russia. This paper analyzes the impact of climate change on the country’s food security from the point of view of its self-sufficiency in grain primarily. Specific conditions prevailing on the Crimean peninsula are also considered.


2014 ◽  
Vol 937 ◽  
pp. 663-668
Author(s):  
Qiu Jing Li ◽  
Xiao Li Hou ◽  
Li Xue ◽  
Hong Yue Chen ◽  
Yun Ting Hao

Climate change refers to man-made changes in our climate, which is caused by changes in temperature, precipitation, and CO2. There is a lot of data coming from all over the world indicating that phenology of garden plants and biodiversity are being impacted by climate change. In the context of climate change, landscape plants can enhance carbon sink function, improve plant design, and mitigate climate change and so on. To determine the impact of these changes on garden plants, scientists would need to strengthen the study of garden plants under global climate change, including different garden type responses to climate change, invaliding species phenology study, extreme weather impacts on landscape plant phenology, the dominant factor of affecting garden plants in different regions, interactions of multiple environmental factors on influence mechanism of garden plants.


Sign in / Sign up

Export Citation Format

Share Document