scholarly journals Polarity Asymmetry in Lightning Return Stroke Speed Caused by the Momentum Associated with Radiation

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1642
Author(s):  
Vernon Cooray ◽  
Gerald Cooray ◽  
Marcos Rubinstein ◽  
Farhad Rachidi

In positive lightning return strokes, the net momentum transported by the radiation field has the same direction as the momentum associated with electrons, whereas the momentum associated with electrons is in opposite direction to the momentum of radiation in negative return strokes. It is shown here that this polarity asymmetry could limit the maximum speed of positive return strokes with respect to the negative return strokes.

2003 ◽  
Vol 84 (6) ◽  
pp. 767-776 ◽  
Author(s):  
V. A. Rakov

Characteristics of lightning discharges that transport either positive charge or both positive and negative charges to the ground are reviewed. These are termed positive and bipolar lightning discharges, respectively. Different types of positive and bipolar lightning are discussed. Although positive lightning discharges account for 10% or less of global cloud-to-ground lightning activity, there are five situations that appear to be conducive to the more frequent occurrence of positive lightning. These situations include 1) the dissipating stage of an individual thunderstorm, 2) winter thunderstorms, 3) trailing stratiform regions of mesoscale convective systems, 4) some severe storms, and 5) thunderclouds formed over forest fires or contaminated by smoke. The highest directly measured lightning currents (near 300 kA) and the largest charge transfers (hundreds of coulombs or more) are thought to be associated with positive lightning. Two types of impulsive positive current waveforms have been observed. One type is characterized by rise times of the order of 10 μs, comparable to those for first strokes in negative lightning, and the other type is characterized by considerably longer rise times, up to hundreds of microseconds. The latter waveforms are apparently associated with very long, 1–2 km, upward negative connecting leaders. The positive return-stroke speed is of the order of 108 m s−1. Positive flashes are usually composed of a single stroke. Positive return strokes often appear to be preceded by significant in-cloud discharge activity, then followed by continuing currents, and involve long horizontal channels. In contrast to negative leaders, which are always optically stepped when they propagate in virgin air, positive leaders seem to be able to move either continuously or in a stepped fashion. The reported percentage of bipolar flashes in summer storms ranges from 6% to 14% and from 5% to 33% in winter storms. Bipolar lightning discharges are usually initiated by upward leaders from tall objects. It appears that positive and negative charge sources in the cloud are tapped by different upward branches of the bipolar-lightning channel.


2021 ◽  
Vol 14 (14) ◽  
pp. 44-50
Author(s):  
Shriram Sharma

Frequency domain information were extracted from the time domain electric fields pertinent to the lightning positive return strokes applying Fourier transform and Wavelet transform. The electric field radiated by positive ground flashes striking the sea were recorded at 10 ns resolution at a coastal station to minimize the propagation effects. The frequency spectrum of the electric field of positive return strokes were computed applying the Fourier transform technique in the range of 10 kHz to 20 MHz owing to the fact that this range of frequency is of very much interest to the researchers and design engineers. The amplitude of the energy spectral density decreases nearly as ƒ-1 from 10 kHz to about 0.1 MHz and drops nearly as ƒ-2 up to 8 MHz.  Applying the wavelet transform technique, the same positive return strokes are found to radiate in the frequency range of 5.5 to 81 kHz with the average spread distribution of 13.6 kHz to about 30 kHz. From frequency spectrum obtained from the Fourier transform it is difficult to identify as which phase of the return stroke radiates in the higher frequency range and that in the lower frequency range, whereas, one can easily identify from the frequency spectrum obtained with the wavelet transform that ramp portion of the positive return stroke radiates in the larger spectral range as compared to that of initial peak of the return stroke.  Also, from the spectral density map obtained from wavelet transform one can easily observe the contribution of each phase in a range of frequency, which is not possible from the Fourier transform technique. Clearly, the wavelet transform is much more powerful tool to extract the frequency domain information of a non-stationary signal as compared to that of Fourier transform.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 249
Author(s):  
Vernon Cooray ◽  
Marcos Rubinstein ◽  
Farhad Rachidi

In return strokes, the parameters that can be measured are the channel base current and the return stroke speed. For this reason, many return stroke models have been developed with these two parameters, among others, as inputs. Here, we concentrate on the current propagation type engineering return stroke models where the return stroke is represented by a current pulse propagating upwards along the leader channel. In the current propagation type return stroke models, in addition to the channel base current and the return stroke speed, the way in which the return stroke current attenuates along the return stroke channel is specified as an input parameter. The goal of this paper is to show that, within the confines of current propagation type models, once the channel base current and the return stroke speed are known, the measured radiation field can be used to evaluate how the return stroke current attenuates along the channel. After giving the mathematics necessary for this inverse transformation, the procedure is illustrated by extracting the current attenuation curve from the typical wave shape of the return stroke current and from the distant radiation field of subsequent return strokes. The derived attenuation curve is used to evaluate both the subsequent and first return stroke electromagnetic fields at different distances. It is shown that all the experimentally observed features can be reproduced by the derived attenuation curve, except for the subsidiary peak and long zero-crossing times. In order to obtain electromagnetic fields of subsequent return strokes that are in agreement with measurements, one has to incorporate the current dispersion into the model. In the case of first return strokes, both current dispersion and reduction in return stroke speed with height are needed to obtain the desired features.


2016 ◽  
Vol 818 ◽  
pp. 134-139 ◽  
Author(s):  
Chin Leong Wooi ◽  
Zulkurnain Abdul-Malek ◽  
Noor Azlinda Ahmad ◽  
Mehrdad Mokhatri ◽  
Amir Hesam Khavari

Lightning is a natural phenomenon that has much impact on man and man-made systems. Lightning can be generally characterized as either negative return stroke (NRS) or positive return stroke (PRS). PRS have high peak currents and long continuing current that are responsible for more intense damage than negative return strokes. However, PRS are considerably less studied compared to NRS due the complexity and paucity of PRS. This study attempts to provide an overview of the positive lightning characteristic research in recent years. The review is classified into four groups, which are: preliminary breakdown pulse of positive lightning, compact intracloud discharge, positive leader and positive lightning return stroke. In spite of recent progress made in this area, our knowledge on the physics of positive lightning remains considerably poorer than negative lightning. Many questions regarding the characteristic of positive lightning and their properties cannot be answered without further research. It would be of great interest to examine the positive lightning parameters under different meteorological conditions as well.


2007 ◽  
Vol 50 (1) ◽  
pp. 104-109 ◽  
Author(s):  
Xue-Qiang GOU ◽  
Yi-Jun ZHANG ◽  
Wan-Sheng DONG ◽  
Xiu-Shu QIE

Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1288
Author(s):  
Vernon Cooray ◽  
Andre Lobato

Electromagnetic radiation fields generated by return strokes transport both energy and momentum from the return stroke to outer space. The momentum transported by the radiation field has only a vertical or z component due to azimuthal symmetry (cylindrical symmetry) associated with a vertical return stroke. In this paper, the energy, momentum, and peak power radiated by return strokes as a function of the return stroke current, return stroke speed, and the zero-crossing time of the radiation fields are studied. The results obtained by numerical simulations for the energy, vertical momentum, and the peak power radiated by lightning return strokes (all parameters normalized by dividing them by the square of the radiation field peak at 100 km) are the following: A typical first return stroke generating a radiation field having a 50 μs zero-crossing time will dissipate field normalized energy of about (1.7–2.5) × 103 J/(V/m)2 and field-normalized vertical momentum of approximately (2.3–3.1) × 10−6 Kg m/s/(V/m)2. A radiation field with a zero-crossing time of 70 μs will dissipate about (2.6–3.4) × 103 J/(V/m)2 in field-normalized energy and (3.2–4.3) × 10−6 Kg m/s/(V/m)2 in field-normalized vertical momentum. The results show that, for a given peak radiation field, the radiated energy and momentum increase with increasing zero-crossing time of the radiation field. The normalized peak power generated by a first return stroke radiation field is about 1.2 × 108 W/(V/m)2 and the peak power is generated within about 5–6 μs from the beginning of the return stroke. Conversely, a typical subsequent return stroke generating a radiation field having a 40 μs zero-crossing time will dissipate field-normalized energy of about (6–9) × 102 J/(V/m)2 and field-normalized vertical momentum of approximately (7.5–11) × 10−7 Kg m/s/(V/m)2. The field-normalized peak power generated by a subsequent return stroke radiation field is about 1.26 × 108 W/(V/m)2 and the peak power is generated within about 0.7–0.8 μs from the beginning of the return stroke. In addition to these parameters, the possible upper bounds for the energy and momentum radiated by return strokes are also presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Chin-Leong Wooi ◽  
Zulkurnain Abdul-Malek ◽  
Behnam Salimi ◽  
Noor Azlinda Ahmad ◽  
Kamyar Mehranzamir ◽  
...  

Positive cloud-ground lightning is considerably more complex and less studied compared to the negative lightning. This paper aims to measure and characterize the significant parameters of positive return strokes electric field, namely, the zero-to-peak rise time, 10–90% rise time, slow front duration, fast transition rise time (10–90%), zero-crossing time, and opposite polarity overshoot relative to peak. To the best of the authors’ knowledge, this is the first time such detailed characteristics of positive lightning in Malaysia are thoroughly analyzed. A total of 41 positive lightning flashes containing 48 return strokes were analyzed. The average multiplicity is 1.2 strokes per flash. The majority of positive lightning was initiated from the primary positive charge rather than as a byproduct of in-cloud discharges. The cumulative probability distribution of rise time parameters, opposite polarity overshoot relative to peak, and slow front amplitude relative to peak are presented. A comparison between studies in four countries representing tropic, subtropic, and temperate regions was also carried out. Measured parameters in Florida, Sweden, and Japan are generally lower than those in Malaysia. Positive lightning occurrences in tropical regions should be further studied and analyzed to improve our current understanding on positive return strokes.


Author(s):  
Alain R. Trudel ◽  
M. Trudel

AirfugeR (Beckman) direct ultracentrifugation of viral samples on electron microscopy grids offers a rapid way to concentrate viral particles or subunits and facilitate their detection and study. Using the A-100 fixed angle rotor (30°) with a K factor of 19 at maximum speed (95 000 rpm), samples up to 240 μl can be prepared for electron microscopy observation in a few minutes: observation time is decreased and structural details are highlighted. Using latex spheres to calculate the increase in sensitivity compared to the inverted drop procedure, we obtained a 10 to 40 fold increase in sensitivity depending on the size of particles. This technique also permits quantification of viral particles in samples if an aliquot is mixed with latex spheres of known concentration.Direct ultracentrifugation for electron microscopy can be performed on laboratory samples such as gradient or column fractions, infected cell supernatant, or on clinical samples such as urine, tears, cephalo-rachidian liquid, etc..


Sign in / Sign up

Export Citation Format

Share Document