scholarly journals Analysis and Sources Identification of Atmospheric PM10 and Its Cation and Anion Contents in Makkah, Saudi Arabia

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 87
Author(s):  
Turki M. Habeebullah ◽  
Said Munir ◽  
Jahan Zeb ◽  
Essam A. Morsy

In this paper, atmospheric water-soluble cation and anion contents of PM10 are analysed in Makkah, Saudi Arabia. PM10 samples were collected at five sites for a whole year. PM10 concentrations (µg/m3) ranged from 82.11 to 739.61 at Aziziyah, 65.37 to 421.71 at Sanaiyah, 25.20 to 466.60 at Misfalah, 52.56 to 507.23 at Abdeyah, and 40.91 to 471.99 at Askan. Both daily and annual averaged PM10 concentrations exceeded WHO and Saudi Arabia national air quality limits. Daily averaged PM10 concentration exceeded the national air quality limits of 340 µg/m3, 32% of the time at Aziziyah, 8% of the time at Sanaiyah, and 6% of the time at the other three sites. On average, the cations and anions made a 37.81% contribution to the PM10 concentrations. SO42−, NO3−, Ca2+, Na+, and Cl− contributed 50.25%, 16.43%, 12.11%, 11.12%, and 8.70% to the total ion concentrations, respectively. The minor ions (F−, Br−, Mg2+, NO2−, and PO43−) contributed just over 1% to the ion mass. Four principal components explained 89% variations in PM10 concentrations. Four major emission sources were identified: (a) Road traffic, including emission from the exhaust, wear-and-tear, and the resuspension of dust particles (F−, SO42−, NO3−, Ca2+, Na+, Mg+, Br−, Cl−, NO2−, PO43−); (b) Mineral dust (Cl−, F−, Na+, Ca2+, Mg2+, PO43−); (c) Industries and construction–demolition work (F−, SO42−, Ca2+, Mg2+); and (d) Seaspray and marine aerosols (Cl−, Br−, Mg2+, Na+). Future work would include an analysis of the metal contents of PM10 and their spatiotemporal variability in Makkah.

1995 ◽  
Vol 32 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Valérie Colandini ◽  
Michel Legret ◽  
Yves Brosseaud ◽  
Jean-Daniel Baladès

Porous pavements infiltrated with stormwater are faced with clogging problems: runoff particles seep and clog the pervious surface layer of these structures. Clogging material samples (in the form of sludge) have been collected in cleaning operations on the pervious asphalt. This study aims at characterizing these materials, particle size distribution, heavy metal contents by particle size, and studying interactions between metals and particles. A sequential extraction procedure proposed by the experts of the Community Bureau of Reference (B.C.R.) was applied to provide information about heavy metal distribution on particles and to evaluate interaction strength, and consequently potential metal mobility when chemical variations occurred in the environment. Mainly made up of sand, the materials are polluted with lead, copper, zinc and cadmium. The concentrations appeared to be linked with road traffic intensity. The heavy metal contents by particle size showed that the finer are the particles, the higher are the heavy metal concentrations. Heavy metals were found potentially labile; metals contents in the residual fraction (mineral fraction) represented less than 20 % of the total concentration. Cadmium and zinc were apparently more labile than lead and copper.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 562
Author(s):  
Jorge Moreda-Piñeiro ◽  
Joel Sánchez-Piñero ◽  
María Fernández-Amado ◽  
Paula Costa-Tomé ◽  
Nuria Gallego-Fernández ◽  
...  

Due to the exponential growth of the SARS-CoV-2 pandemic in Spain (2020), the Spanish Government adopted lockdown measures as mitigating strategies to reduce the spread of the pandemic from 14 March. In this paper, we report the results of the change in air quality at two Atlantic Coastal European cities (Northwest Spain) during five lockdown weeks. The temporal evolution of gaseous (nitrogen oxides, comprising NOx, NO, and NO2; sulfur dioxide, SO2; carbon monoxide, CO; and ozone, O3) and particulate matter (PM10; PM2.5; and equivalent black carbon, eBC) pollutants were recorded before (7 February to 13 March 2020) and during the first five lockdown weeks (14 March to 20 April 2020) at seven air quality monitoring stations (urban background, traffic, and industrial) in the cities of A Coruña and Vigo. The influences of the backward trajectories and meteorological parameters on air pollutant concentrations were considered during the studied period. The temporal trends indicate that the concentrations of almost all species steadily decreased during the lockdown period with statistical significance, with respect to the pre-lockdown period. In this context, great reductions were observed for pollutants related mainly to fossil fuel combustion, road traffic, and shipping emissions (−38 to −78% for NO, −22 to −69% for NO2, −26 to −75% for NOx, −3 to −77% for SO2, −21% for CO, −25 to −49% for PM10, −10 to −38% for PM2.5, and −29 to −51% for eBC). Conversely, O3 concentrations increased from +5 to +16%. Finally, pollutant concentration data for 14 March to 20 April of 2020 were compared with those of the previous two years. The results show that the overall air pollutants levels were higher during 2018–2019 than during the lockdown period.


2021 ◽  
Vol 13 (2) ◽  
pp. 496
Author(s):  
Xiaojian Hu ◽  
Nuo Chen ◽  
Nan Wu ◽  
Bicheng Yin

The Shanghai government has outlined plans for the new vehicles used for the public transportation, rental, sanitation, postal, and intra-city freight to be completely powered by electricity by 2020. This paper analyzed the characteristics of vehicle emissions in Shanghai in the past five years. The potential reduction in road traffic related emissions due to the promotion and application of electric vehicle in Shanghai was evaluated. The potential reduction was quantified by vehicular emissions. The vehicular emissions inventories are calculated by the COPERT IV model under the different scenarios, of which the results indicate that promoting electric vehicles is the efficient measure to control all road traffic related emissions and improve urban air quality. The results also provided basis and support for making policies to promote and manage electric vehicles.


2013 ◽  
Vol 32 (2) ◽  
pp. 260-269 ◽  
Author(s):  
Z S Seddigi ◽  
G A Kandhro ◽  
F Shah ◽  
E Danish ◽  
Mustafa Soylak
Keyword(s):  

2021 ◽  
pp. 30
Author(s):  
Ahood Mahjari

Introduction: Spinal cord injury (SCI) is a life-changing neurological injury that puts a significant load on the healthcare system. SCI can be caused by several reasons such as road traffic accident (RTA), motor traffic accident (MTA), fall, gunshots, or bomb blast. There is not much national data concerning the etiology of SCI in Saudi Arabia. Therefore, we conducted this study to quantify the number of SCI incidence at King Khalid Hospital (KKH), Najran between June 2018 and June 2019. The study aimed at reviewing the rate and epidemiology of SCI at KKH for all patients admitted to the hospital during the study period and examining the causes of SCI for suggesting prevention strategies. Methodology: This retrospective study included all patients with SCI admitted to KKH during the mentioned period. Several factors for each patient were recorded including their age, gender, nationality, cause of SCI, and the outcomes of neurological injury. Result: In total, 182 SCI patients were admitted during the study period: 53% of them were male, and those aged 16–30 years were most vulnerable to SCI. RTA was the most common cause of SCI for males (59%), followed by bomb blasts (15%). While fall was ranked as the second cause of SCI in males (15.4%), it was the main reason for SCI in females 13%, followed by RTA. The majority of admitted cases in younger age was stable and improved, however, after RTA four patients had quadriplegia and six cases had paraplegia. Conclusion: RTA is the most common cause of SCI followed by fall and bomb blast. Younger patients are more likely to improve after SCI compared to elderly patients.


2018 ◽  
Vol 11 (10) ◽  
pp. 1217-1232 ◽  
Author(s):  
Bruno Vicente ◽  
Sandra Rafael ◽  
Vera Rodrigues ◽  
Hélder Relvas ◽  
Mariana Vilaça ◽  
...  

2018 ◽  
Vol 176 ◽  
pp. 08012
Author(s):  
Rei Kudo ◽  
Tomoaki Nishizawa ◽  
Akiko Higurashi ◽  
Eiji Oikawa

For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obtained; the much amount of the water-soluble and light absorbing carbonaceous particles were estimated in the biomass-burning event, and the dust particles were estimated in the dust event.


2017 ◽  
Vol 14 (22) ◽  
pp. 5239-5252 ◽  
Author(s):  
Daniel Puppe ◽  
Axel Höhn ◽  
Danuta Kaczorek ◽  
Manfred Wanner ◽  
Marc Wehrhan ◽  
...  

Abstract. The significance of biogenic silicon (BSi) pools as a key factor for the control of Si fluxes from terrestrial to aquatic ecosystems has been recognized for decades. However, while most research has been focused on phytogenic Si pools, knowledge of other BSi pools is still limited. We hypothesized that different BSi pools influence short-term changes in the water-soluble Si fraction in soils to different extents. To test our hypothesis we took plant (Calamagrostis epigejos, Phragmites australis) and soil samples in an artificial catchment in a post-mining landscape in the state of Brandenburg, Germany. We quantified phytogenic (phytoliths), protistic (diatom frustules and testate amoeba shells) and zoogenic (sponge spicules) Si pools as well as Tiron-extractable and water-soluble Si fractions in soils at the beginning (t0) and after 10 years (t10) of ecosystem development. As expected the results of Tiron extraction showed that there are no consistent changes in the amorphous Si pool at Chicken Creek (Hühnerwasser) as early as after 10 years. In contrast to t0 we found increased water-soluble Si and BSi pools at t10; thus we concluded that BSi pools are the main driver of short-term changes in water-soluble Si. However, because total BSi represents only small proportions of water-soluble Si at t0 (< 2 %) and t10 (2.8–4.3 %) we further concluded that smaller (< 5 µm) and/or fragile phytogenic Si structures have the biggest impact on short-term changes in water-soluble Si. In this context, extracted phytoliths (> 5 µm) only amounted to about 16 % of total Si contents of plant materials of C. epigejos and P. australis at t10; thus about 84 % of small-scale and/or fragile phytogenic Si is not quantified by the used phytolith extraction method. Analyses of small-scale and fragile phytogenic Si structures are urgently needed in future work as they seem to represent the biggest and most reactive Si pool in soils. Thus they are the most important drivers of Si cycling in terrestrial biogeosystems.


2014 ◽  
Vol 11 (7) ◽  
pp. 11361-11389 ◽  
Author(s):  
K. Violaki ◽  
J. Sciare ◽  
J. Williams ◽  
A. R. Baker ◽  
M. Martino ◽  
...  

Abstract. To obtain a comprehensive picture on the spatial distribution of water soluble organic nitrogen (WSON) in marine aerosols, samples were collected during research cruises in the tropical and south Atlantic Ocean and during a one year period (2005) over the southern Indian Ocean (Amsterdam island). Samples have been analyzed for both organic and inorganic forms of nitrogen and the factors controlling their levels have been examined. Fine mode WSON was found to play a significant role in the remote marine atmosphere with enhanced biogenic activity, with concentrations of WSON (11.3 ± 3.3 nmol N m–3) accounting for about 84% of the total dissolved nitrogen (TDN). Such levels are similar to those observed in the polluted marine atmosphere of the eastern Mediterranean (11.6 ± 14.0 nmol N m–3). Anthropogenic activities were found to be an important source of atmospheric WSON as evidenced by the ten times higher levels in the Northern Hemisphere (NH) than in the remote Southern Hemisphere (SH). Furthermore, the higher contribution of WSON to TDN (40%) in the SH, compared to the NH (20%), underlines the important role of organic nitrogen in remote marine areas. Finally, Sahara dust was also identified as a significant source of WSON in the coarse mode aerosols of the NH.


Sign in / Sign up

Export Citation Format

Share Document