scholarly journals Geo-Hydrological Events and Temporal Trends in CAPE and TCWV over the Main Cities Facing the Mediterranean Sea in the Period 1979–2018

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 89
Author(s):  
Guido Paliaga ◽  
Antonio Parodi

The Mediterranean region is regarded as the meeting point between Europe, Africa and the Middle East. Due to favourable climatic conditions, many civilizations have flourished here. Approximately, about half a billion people live in the Mediterranean region, which provides a key passage for trading between Europe and Asia. Belonging to the middle latitude zone, this region experiences high meteorological variability that is mostly induced by contrasting hot and cold air masses that generally come from the west. Due to such phenomenon, this region is subject to frequent intensive precipitation events. Besides, in this complex physiographic and orographic region, human activities have contributed to enhance the geo-hydrologic risk. Further, in terms of climate change, the Mediterranean is a hot spot, probably exposing it to future damaging events. In this framework, this research focuses on the analysis of precipitation related events recorded in the EM–DAT disasters database for the period 1979–2018. An increasing trend emerges in both event records and related deaths. Then a possible linkage with two meteorological variables was investigated. Significant trends were studied for CAPE (Convective Available Potential Energy) and TCWV (Total Column Water Vapor) data, as monthly means in 100 km2 cells for 18 major cities facing the Mediterranean Sea. The Mann–Kendall trend test, Sen’s slope estimation and the Hurst exponent estimation for the investigation of persistency in time series were applied. The research provides new evidence and quantification for the increasing trend of climate related disasters at the Mediterranean scale: recorded events in 1999–2018 are about four times the ones in 1979–1998. Besides, it relates this rise with the trend of two meteorological variables associated with high intensity precipitation events, which shows a statistically significative increasing trend in many of the analysed cities facing the Mediterranean Sea.

2018 ◽  
Author(s):  
Camille Richon ◽  
Jean-Claude Dutay ◽  
Laurent Bopp ◽  
Briac Le Vu ◽  
James C. Orr ◽  
...  

Abstract. The Mediterranean region is a climate change hot-spot. Increasing greenhouse gas emissions are projected to lead to a significant warming of Mediterranean Sea waters, as well as major changes in its circulation, but the subsequent effects of such changes on marine biogeochemistry are still poorly understood. Our aim is to investigate the changes in nutrient concentrations and biological productivity in response to climate change in the Mediterranean region. To do so, we perform transient simulations with the coupled high resolution model NEMOMED8/PISCES using the pessimistic IPCC SRES-A2 socio-economic scenario and corresponding Atlantic, Black Sea, and coastal nutrient inputs. Our results indicate that nitrate is accumulating in the Mediterranean Sea over the 21st century, whereas no tendency is found for phosphorus. These contrasted variations result from an unbalanced nitrogen-to-phosphorus input from external sources and lead to changes in phytoplankton nutrient limitation factors. In addition, phytoplankton net primary productivity is reduced by 10 % in the 2090s in comparison to the present state, with reductions of up to 50 % in some regions such as the Aegean Sea as a result of nutrient limitation and vertical stratification. We also perform sensitivity tests in order to study separately the effects of climate and biogeochemical input changes on the Mediterranean future state. This article is a first step in the study of transient climate change effects on the Mediterranean biogeochemistry, but calls for coordinated multi-model efforts to explore the various uncertainty sources of such a future projection.


Author(s):  
Sarah Davis-Secord

Sicily is a lush and culturally rich island at the center of the Mediterranean Sea. Throughout its history, the island has been conquered and colonized by successive waves of peoples from across the Mediterranean region. In the early and central Middle Ages, the island was ruled and occupied in turn by Greek Christians, Muslims, and Latin Christians. This book investigates Sicily's place within the religious, diplomatic, military, commercial, and intellectual networks of the Mediterranean by tracing the patterns of travel, trade, and communication among Christians (Latin and Greek), Muslims, and Jews. By looking at the island across this long expanse of time and during the periods of transition from one dominant culture to another, the book uncovers the patterns that defined and redefined the broader Muslim–Christian encounter in the Middle Ages. Sicily was a nexus for cross-cultural communication not because of its geographical placement at the center of the Mediterranean but because of the specific roles the island played in a variety of travel and trade networks in the Mediterranean region.


2020 ◽  
Author(s):  
Iuliana Vasiliev ◽  
Daniela Boehn ◽  
Darja Volkovskaja ◽  
Clemens Schmitt ◽  
Konstantina Agiadi ◽  
...  

<p>Between 5.97-5.33 Ma several kilometre-thick evaporite units were deposited in the Mediterranean Basin during the Messinian Salinity Crisis (MSC). The MSC reflects a period featured by a negative hydrological budget, with a net evaporative loss of water exceeding precipitation and riverine runoff. The contemporary changes in continental and marine circum-Mediterranean temperature are, however, poorly constrained. Here we reconstruct continental mean annual temperatures (MAT) using branched glycerol dialkyl glycerol tetraether (GDGT) biomarkers for the time period corresponding to MSC Stage 3 (5.55-5.33 Ma). Additionally, for the same time interval, we estimate sea surface temperatures (SSTs) of the Mediterranean Sea using isoprenoidal GDGTs based TEX<sub>86</sub> proxy. The excellently preserved organic biomarkers were extracted from outcrops and DSDP cores spread over a large part of the onland (Malaga, Sicily, Cyprus) and offshore (holes 124 and 134 from the Balearic abyssal plane and hole 374 from the Ionian Basin) Mediterranean Basin domain. The calculated MATs for the 5.55 to 5.33 Ma interval show values around 16 to 18 ºC for the Malaga, Sicily and Cyprus outcrops. The MAT values calculated for DSDP Leg 13 holes 124, 134 and Leg 42A hole 374 are lower, around 11 to 13 ºC.</p><p>For samples where the branched and isoprenoid tetraether (BIT) index was lower than the 0.4 we could calculate TEX<sub>86</sub> derived SSTs averaging around 27 ºC for all sampled locations. Where available (i.e. Sicily), we compared the TEX<sub>86</sub> derived SSTs with alkenone based, U<sup>k</sup><sub>37</sub> derived SST estimates from the same samples. The TEX<sub>86</sub> derived SST values are slightly higher than the U<sup>k</sup><sub>37</sub> derived SST of 20 to 28 ºC. For the Mediterranean region, values between 19 and 27 ºC of the U<sup>k</sup><sub>37</sub> derived SSTs were calculated for the interval between the 8.0 and 6.4 Ma (Tzanova et al., 2015), close to our calculations for Sicily section (20 to 28 ºC). Independent of common pitfalls that may arise in using molecular biomarkers as temperature proxies, both SST estimates independently hint towards much warmer Mediterranean Sea water during the latest phase (Stage 3) of the MSC. These elevated temperatures coincide with higher δD values measured on alkenones and long chain n-alkanes (both records indicating for more arid and/or warmer conditions than today between 5.55 and 5.33 Ma). We therefore conclude that the climate between 5.55 to 5.33 Ma was warmer than present-day conditions, recorded both in the Mediterranean Sea and the land surrounding it.</p>


Author(s):  
Dario Conte ◽  
Piero Lionello ◽  
Silvio Gualdi

<p>Dynamical downscaling through coupled regional climate model plays an important role to improve climate information at regional fine-scale, since it modulates information produced by GCM, combining planetary scale processes with regional scale processes.  This study describes the impact of climate change  on rainfall over the Mediterranean region, downscaling, at two different horizontal grid resolutions (0.44 and 0.11 degs), a Global Climate Model (GCM at 0.75 degs) by means of a coupled Regional Climate System Models (RCSM). We analyze the effect of adopting model version with different horizontal resolutions (0.11, 0.44 e 0.75 degs), considering  two climate representative concentration pathways (rcp4.5 and rcp8.5). The spatial pattern on different aspects of precipitation climatology are investigated such as increase/decrease in the intensity of precipitation events, extremes and annual amount of wet days. Moreover, since the grid models cover a wide and complex climate geographic area, the rainfall probability over six sub-regions are calculated: (1) Alps, (2) North-Western coast, (2) South Italy, (3) central part of the Mediterranean sea, (4) Greece Anatolia peninsula and Levantine basin. Although, the evaluation of RCSM downscaling is complex and depends on several factors such as: variables considered, geographic area, topography, model configuration and so on, the results show that it produces an significant improvement, adding information with regards to fine-scale spatial pattern, respect to that provided by GCM.</p><p><strong>ACKNOWLEDGEMENT:</strong> This contribution is based on work conducted by the authors within the SOCLIMPACT project, that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 776661. The fullname of the project is "DownScaling CLImate ImPACTs and decarbonisation pathways in EU islands, and enhancing socioeconomic and non-market evaluation of Climate Change for Europe, for 2050 and Beyond". The opinions expressed are those of the author(s) only and should not be considered as representative of the European Commission’s official position.</p><p><strong>Keywords:</strong>  widespread heavy rainfall, coupled numerical models, daily rainfall, climate scenarios, climatology of heavy rainfall.</p><p> </p>


2014 ◽  
Vol 2 (4) ◽  
pp. 2813-2849
Author(s):  
I. Marchesini ◽  
F. Ardizzone ◽  
M. Alvioli ◽  
M. Rossi ◽  
F. Guzzetti

Abstract. We used landslide information for 13 study areas in Italy and morphometric information obtained from the 3 arc-second SRTM DEM to determine areas where landslide susceptibility is expected to be null or negligible in Italy, and in the landmasses surrounding the Mediterranean Sea. The morphometric information consisted in the local terrain slope computed in a square 3 × 3 cell moving window, and in the regional relative relief computed in a circular 15 × 15 cell moving window. We tested three different models to determine the non-susceptible landslide areas, including a linear model (LR), a quantile linear model (QLR), and a quantile non-linear model (QNL). We tested the performance of the three models using independent landslide information represented by the Italian Landslide Inventory (Inventario Fenomeni Franosi in Italia – IFFI). Best results were obtained using the QNL model. The corresponding zonation of non-susceptible landslide areas was intersected in a GIS with geographical census data for Italy. The result allowed determining that 57.5% of the population of Italy (in 2001) was located in areas where landslide susceptibility is expected to be null or negligible, and that the remaining 42.5% was located in areas where some landslide susceptibility is expected. We applied the QNL model to the landmasses surrounding the Mediterranean Sea, and we tested the synoptic non-susceptibility zonation using independent landslide information for three study areas in Spain. Results proved that the QNL model was capable of determining where landslide susceptibility is expected to be negligible in the Mediterranean area. We expect our results to be applicable in similar study areas, facilitating the identification of non-susceptible and susceptible landslide areas, at the synoptic scale.


2008 ◽  
Vol 17 ◽  
pp. 87-91 ◽  
Author(s):  
A. V. Mehta ◽  
S. Yang

Abstract. Climatological features of mesoscale rain activities over the Mediterranean region between 5° W–40° E and 28° N–48° N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25°×0.25° spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3–5 mm day−1) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (~0.5 mm day−1). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November–December. Over the Mediterranean Sea, an average rainrate of ~1–2 mm day−1 is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.


2014 ◽  
Vol 121 (3-4) ◽  
pp. 499-515 ◽  
Author(s):  
Simon O. Krichak ◽  
Joseph Barkan ◽  
Joseph S. Breitgand ◽  
Silvio Gualdi ◽  
Steven B. Feldstein

Sign in / Sign up

Export Citation Format

Share Document