scholarly journals New Entropy-Based Similarity Measure between Interval-Valued Intuitionstic Fuzzy Sets

Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 73 ◽  
Author(s):  
Saida Mohamed ◽  
Areeg Abdalla ◽  
Robert John

In this paper, we propose a new approach to constructing similarity measures using the entropy measure for Interval-Valued Intuitionistic Fuzzy Sets. In addition, we provide several illustrative examples to demonstrate the practicality and effectiveness of the proposed formula. Finally, we use the new proposed similarity measure to develop a new approach for solving problems of pattern recognition and multi-criteria fuzzy decision-making.

2014 ◽  
Vol 2014 ◽  
pp. 1-16
Author(s):  
Chong Wu ◽  
Peng Luo ◽  
Yongli Li ◽  
Xuekun Ren

As an important content in fuzzy mathematics, similarity measure is used to measure the similarity degree between two fuzzy sets. Considering the existing similarity measures, most of them do not consider the hesitancy degree and some methods considering the hesitancy degree are based on the intuitionistic fuzzy sets, intuitionistic fuzzy values. It may cause some counterintuitive results in some cases. In order to make up for the drawback, we present a new approach to construct the similarity measure between two interval-valued intuitionistic fuzzy sets using the entropy measure and considering the hesitancy degree. In particular, the proposed measure was demonstrated to yield a similarity measure. Besides, some examples are given to prove the practicality and effectiveness of the new measure. We also apply the similarity measure to expert system to solve the problems on pattern recognition and the multicriteria group decision making. In these examples, we also compare it with existing methods such as other similarity measures and the ideal point method.


2021 ◽  
Vol 10 (1) ◽  
pp. 64-93
Author(s):  
Pratiksha Tiwari

Interval-valued intuitionistic fuzzy environment is appropriate for most of the practical scenarios involving uncertainty, vagueness, and insufficient information. Entropy, similarity, distance, inclusion, and cross entropy measures are a few methods used for measuring uncertainty and classifying fuzzy sets and its generalizations. Entropy of a fuzzy set describes fuzziness degree of the set and similarity measure measures similarity between two fuzzy or members of its extended family. This paper presents generalized entropy and similarity measures for interval-valued intuitionistic fuzzy sets. Further, the proposed similarity measure is compared with some existing measure of similarity with the help of an illustrative example, and a method is used to define optimal point using the existing information. Finally, entropy and similarity measures are used to identify best alternatives to solve multi-attribute decision making.


2012 ◽  
Vol 39 (15) ◽  
pp. 12085-12091 ◽  
Author(s):  
Shyi-Ming Chen ◽  
Ming-Wey Yang ◽  
Szu-Wei Yang ◽  
Tian-Wei Sheu ◽  
Churn-Jung Liau

Symmetry ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 281 ◽  
Author(s):  
Dajun Ye ◽  
Decui Liang ◽  
Pei Hu

In this article, we demonstrate how interval-valued intuitionistic fuzzy sets (IVIFSs) can function as extended intuitionistic fuzzy sets (IFSs) using the interval-valued intuitionistic fuzzy numbers (IVIFNs) instead of precision numbers to describe the degree of membership and non-membership, which are more flexible and practical in dealing with ambiguity and uncertainty. By introducing IVIFSs into three-way decisions, we provide a new description of the loss function. Thus, we firstly propose a model of interval-valued intuitionistic fuzzy decision-theoretic rough sets (IVIFDTRSs). According to the basic framework of IVIFDTRSs, we design a strategy to address the IVIFNs and deduce three-way decisions. Then, we successfully extend the results of IVIFDTRSs from single-person decision-making to group decision-making. In this situation, we adopt a grey correlation accurate weighted determining method (GCAWD) to compute the weights of decision-makers, which integrates the advantages of the accurate weighted determining method and grey correlation analysis method. Moreover, we utilize the interval-valued intuitionistic fuzzy weighted averaging (IIFWA) operation to count the aggregated scores and the accuracies of the expected losses. By comparing these scores and accuracies, we design a simple and straightforward algorithm to deduce three-way decisions for group decision-making. Finally, we use an illustrative example to verify our results.


Sign in / Sign up

Export Citation Format

Share Document