scholarly journals Alcoholic Fermentation Monitoring and pH Prediction in Red and White Wine by Combining Spontaneous Raman Spectroscopy and Machine Learning Algorithms

Beverages ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 78
Author(s):  
Harrison Fuller ◽  
Chris Beaver ◽  
James Harbertson

In the following study, total sugar concentrations before and during alcoholic fermentation, as well as ethanol concentrations and pH levels after fermentation, of red and white wine grapes were successfully predicted using Raman spectroscopy. Fluorescing compounds such as anthocyanins and pigmented phenolics found in red wine present one of the primary limitations of enological analysis using Raman spectroscopy. Unlike the spontaneous Raman effect, fluorescence is a highly efficient process and consequently emits a much stronger signal than spontaneous Raman scattering. For this reason, many enological applications of Raman spectroscopy are impractical as the more subtle Raman spectrum of any red wine sample is in large part masked by fluorescing compounds present in the wine. This work employs a simple extraction method to mitigate fluorescence in finished red wines. Ethanol and total sugars (fructose plus glucose) of wines made from red (Cabernet Sauvignon) and white (Chardonnay, Sauvignon Blanc, and Gruner Veltliner) varieties were modeled using support vector regression (SVR), partial least squares regression (PLSR) and Ridge regression (RR). The results, which compared the predicted to measured total sugar concentrations before and during fermentation, were excellent (R2SVR = 0.96, R2PLSR = 0.95, R2RR = 0.95, RMSESVR = 1.59, RMSEPLSR = 1.57, RMSERR = 1.57), as were the ethanol and pH predictions for finished wines after phenolic stripping with polyvinylpolypyrrolidone (R2SVR = 0.98, R2PLSR = 0.99, R2RR = 0.99, RMSESVR = 0.23, RMSEPLSR = 0.21, RMSERR = 0.23). The results suggest that Raman spectroscopy is a viable tool for rapid and trustworthy fermentation monitoring.

2020 ◽  
Vol 187 ◽  
pp. 04001
Author(s):  
Ravipat Lapcharoensuk ◽  
Kitticheat Danupattanin ◽  
Chaowarin Kanjanapornprapa ◽  
Tawin Inkawee

This research aimed to study the combination of NIR spectroscopy and machine learning for monitoring chilli sauce adulterated with papaya smoothie. The chilli sauce was produced by the famous community enterprise of chilli sauce processing in Thailand. The ingredients of the chilli sauce consisted of 45% chilli, 25% sugar, 20% garlic, 5% vinegar, and 5% salt. The chilli sauce sample was mixed with ripened papaya (Khaek Dam variety) smoothie with 9 levels from 10 to 90 %w/w. The NIR spectra of pure chilli sauce, papaya smoothie and 9 adulterated chilli sauce samples were recorded using FT-NIR spectrometer in the wavenumber range of 12500 and 4000 cm-1. Three machine learning algorithms were applied to develop a model for monitoring adulterated chilli sauce, including partial least squares regression (PLS), support vector machine (SVM), and backpropagation neural network (BPNN). All model presented performance of prediction in the validation set with R2al = 0.99 while RMSEP of PLS, SVM and BPNN were 1.71, 2.18 and 3.27% w/w respectively. This finding indicated that NIR spectroscopy coupled with machine learning approaches were shown to be an alternative technique to monitor papaya smoothie adulterated in chilli sauce in the global food industry.


2021 ◽  
Vol 13 (23) ◽  
pp. 4825
Author(s):  
Salman Naimi ◽  
Shamsollah Ayoubi ◽  
Mojtaba Zeraatpisheh ◽  
Jose Alexandre Melo Dematte

Soil salinization is a severe danger to agricultural activity in arid and semi-arid areas, reducing crop production and contributing to land destruction. This investigation aimed to utilize machine learning algorithms to predict spatial soil salinity (dS m−1) by combining environmental covariates derived from remotely sensed (RS) data, a digital elevation model (DEM), and proximal sensing (PS). The study is located in an arid region, southern Iran (52°51′–53°02′E; 28°16′–28°29′N), in which we collected 300 surface soil samples and acquired the spectral data with RS (Sentinel-2) and PS (electromagnetic induction instrument (EMI) and portable X-ray fluorescence (pXRF)). Afterward, we analyzed the data using five machine learning methods as follows: random forest—RF, k-nearest neighbors—kNN, support vector machines—SVM, partial least squares regression—PLSR, artificial neural networks—ANN, and the ensemble of individual models. To estimate the electrical conductivity of the saturated paste extract (ECe), we built three scenarios, including Scenario (1): Synthetic Soil Image (SySI) bands and salinity indices derived from it; Scenario (2): RS data, PS data, topographic attributes, and geology and geomorphology maps; and Scenario (3): the combination of Scenarios (1) and (2). The best prediction accuracy was obtained for the RF model in Scenario (3) (R2 = 0.48 and RMSE = 2.49), followed by Scenario (2) (RF model, R2 = 0.47 and RMSE = 2.50) and Scenario (1) for the SVM model (R2 = 0.26 and RMSE = 2.97). According to ensemble modeling, a combined strategy with the five models exceeded the performance of all the single ones and predicted soil salinity in all scenarios. The results revealed that the ensemble modeling method had higher reliability and more accurate predictive soil salinity than the individual approach. Relative improvement (RI%) showed that the R2 index in the ensemble model improved compared to the most precise prediction for the Scenarios (1), (2), and (3) with 120.95%, 56.82%, and 66.71%, respectively. We applied the best model in each scenario for mapping the soil salinity in the selected area, which indicated that ECe tended to increase from the northwestern to south and southeastern regions. The area with high ECe was located in the regions that mainly had low elevations and playa. The areas with low ECe were located in the higher elevations with steeper slopes and alluvial fans, and thus, relief had great importance. This study provides a precise, cost-effective, and scientific base prediction for decision-making purposes to map soil salinity in arid regions.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1576 ◽  
Author(s):  
Chris Beaver ◽  
Thomas S Collins ◽  
James Harbertson

The primary objective of this work was to optimize red wine phenolic prediction with models built from wine ultraviolet–visible absorbance spectra. Three major obstacles were addressed to achieve this, namely algorithm selection, spectral multicollinearity, and phenolic evolution over time. For algorithm selection, support vector regression, kernel ridge regression, and kernel partial least squares regression were compared. For multicollinearity, the spectrum of malvidin chloride was used as an external standard for spectral adjustment. For phenolic evolution, spectral data were collected during fermentation as well as once a week for four weeks after fermentation had ended. Support vector regression gave the most accurate predictions among the three algorithms tested. Additionally, malvidin chloride proved a useful standard for phenolic spectral transformation and isolation. As for phenolic evolution, models needed to be calibrated and validated throughout the aging process to ensure predictive accuracy. In short, red wine phenolic prediction by the models built in this work can be realistically achieved, although periodic model re-calibration and expansion from data obtained using known phenolic assays is recommended to maintain model accuracy.


2021 ◽  
Vol 13 (17) ◽  
pp. 3459
Author(s):  
Joanna Pranga ◽  
Irene Borra-Serrano ◽  
Jonas Aper ◽  
Tom De Swaef ◽  
An Ghesquiere ◽  
...  

High-throughput field phenotyping using close remote sensing platforms and sensors for non-destructive assessment of plant traits can support the objective evaluation of yield predictions of large breeding trials. The main objective of this study was to examine the potential of unmanned aerial vehicle (UAV)-based structural and spectral features and their combination in herbage yield predictions across diploid and tetraploid varieties and breeding populations of perennial ryegrass (Lolium perenne L.). Canopy structural (i.e., canopy height) and spectral (i.e., vegetation indices) information were derived from data gathered with two sensors: a consumer-grade RGB and a 10-band multispectral (MS) camera system, which were compared in the analysis. A total of 468 field plots comprising 115 diploid and 112 tetraploid varieties and populations were considered in this study. A modelling framework established to predict dry matter yield (DMY), was used to test three machine learning algorithms, including Partial Least Squares Regression (PLSR), Random Forest (RF), and Support Vector Machines (SVM). The results of the nested cross-validation revealed: (a) the fusion of structural and spectral features achieved better DMY estimates as compared to models fitted with structural or spectral data only, irrespective of the sensor, ploidy level or machine learning algorithm applied; (b) models built with MS-based predictor variables, despite their lower spatial resolution, slightly outperformed the RGB-based models, as lower mean relative root mean square error (rRMSE) values were delivered; and (c) on average, the RF technique reported the best model performances among tested algorithms, regardless of the dataset used. The approach introduced in this study can provide accurate yield estimates (up to an RMSE = 308 kg ha−1) and useful information for breeders and practical farm-scale applications.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi125-vi125
Author(s):  
Gilbert Georg Klamminger ◽  
Laurent Mombaerts ◽  
Karoline Klein ◽  
Finn Jelke ◽  
Giulia Mirizzi ◽  
...  

Abstract BACKGROUND Although microscopic assessment is still the diagnostic gold standard in pathology, non-light microscopic methods such as new imaging methods and molecular pathology have considerably contributed to more precise diagnostics. As an upcoming method, Raman spectroscopy (RS) offers a "molecular fingerprint" which could be used to differentiate tissue heterogeneity or diagnostic entities. RS has so far been successfully applied on fresh and frozen tissue, however more aggressively, chemically treated tissue such as formalin-fixed, paraffin-embedded (FFPE) samples are challenging for RS. METHODS To address this issue, we examined FFPE samples of a broad range of intracranial tumors (e.g. glioblastoma and primary CNS lymphoma) and also different areas of morphologically highly heterogeneous glioblastoma tumor tissue. The latter in order to classify not only the tumor entity but also histologically defined GBM areas according to their spectral properties. We applied linear and nonlinear machine learning algorithms (Logistic Regression, Random Forest, Support Vector Machine) on our spectroscopic data and compared statistical performance of resulting classifiers. RESULTS We found that Random Forest classification distinguished between glioblastoma and primary CNS lymphoma with a balanced accuracy of 94%, only using Raman measurements on FFPE tissue. Furthermore, our established support vector machine-based classifier identified distinct histological areas in glioblastoma such as tumor core and necroses with an overall accuracy of 70.5% and showed a clear separation between the areas of necrosis and peritumoral zone. CONCLUSIONS This relatively cheap and easy-to-apply tool may serve useful to complement histopathological and molecular diagnostics. It provides an unbiased approach to tumor diagnostics with very little requirements (e.g. histopathological feature completeness of the tumor entity) to the sample. As a conclusion, we propose RS as a potential future additional method in the (neuro)-pathological toolbox for tumor diagnostics.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


2020 ◽  
Vol 17 (6) ◽  
pp. 847-856
Author(s):  
Shengbing Ren ◽  
Xiang Zhang

The problem of synthesizing adequate inductive invariants lies at the heart of automated software verification. The state-of-the-art machine learning algorithms for synthesizing invariants have gradually shown its excellent performance. However, synthesizing disjunctive invariants is a difficult task. In this paper, we propose a method k++ Support Vector Machine (SVM) integrating k-means++ and SVM to synthesize conjunctive and disjunctive invariants. At first, given a program, we start with executing the program to collect program states. Next, k++SVM adopts k-means++ to cluster the positive samples and then applies SVM to distinguish each positive sample cluster from all negative samples to synthesize the candidate invariants. Finally, a set of theories founded on Hoare logic are adopted to check whether the candidate invariants are true invariants. If the candidate invariants fail the check, we should sample more states and repeat our algorithm. The experimental results show that k++SVM is compatible with the algorithms for Intersection Of Half-space (IOH) and more efficient than the tool of Interproc. Furthermore, it is shown that our method can synthesize conjunctive and disjunctive invariants automatically


2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1000
Author(s):  
Anamaria Călugăr ◽  
Teodora Emilia Coldea ◽  
Carmen Rodica Pop ◽  
Tiberia Ioana Pop ◽  
Anca Cristina Babeș ◽  
...  

The aim of this work was to compare the variations of alcohols compounds in white wine Muscat Ottonel variety aged in the presence of untoasted oak chips, toasted oak chips and untoasted barrel, considering three ageing periods—30, 60, and 90 days. The liquid-liquid extraction and gas chromatography coupled to mass spectrometry were used to compare the concentrations of the volatile constituents of Muscat Ottonel wines. A total of 51 volatile compounds were quantified. Alcohols, terpenic and carboxylic acids decreased with ageing time, whereas esters, lactones, and phenolic compounds increased due esterification processes. The chips toast level, method, and duration of ageing, significantly influenced the content of aromatic compounds. Partial least squares regression (PLS-R) clearly discriminated the initial wine and also the wines aged with toasted and untoasted medium. The compounds (alcohols and terpenes) that impart distinctive aroma of Muscat Ottonel were enhanced by untoasted medium. Light toasted oak chips enhanced wood volatile components (acetovanillone and p-vinyl guaiacol). This study provides important scientific results on the ageing of Muscat Ottonel wines with practical economic benefits to winemakers. Alternative less expensive ageing methods and improved control on the wood components extraction process, may contribute to obtaining high-quality wines.


Sign in / Sign up

Export Citation Format

Share Document