scholarly journals Mitochondrial Heterogeneity in Metabolic Diseases

Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 927
Author(s):  
Jennifer Ngo ◽  
Corey Osto ◽  
Frankie Villalobos ◽  
Orian S. Shirihai

Mitochondria have distinct architectural features and biochemical functions consistent with cell-specific bioenergetic needs. However, as imaging and isolation techniques advance, heterogeneity amongst mitochondria has been observed to occur within the same cell. Moreover, mitochondrial heterogeneity is associated with functional differences in metabolic signaling, fuel utilization, and triglyceride synthesis. These phenotypic associations suggest that mitochondrial subpopulations and heterogeneity influence the risk of metabolic diseases. This review examines the current literature regarding mitochondrial heterogeneity in the pancreatic beta-cell and renal proximal tubules as they exist in the pathological and physiological states; specifically, pathological states of glucolipotoxicity, progression of type 2 diabetes, and kidney diseases. Emphasis will be placed on the benefits of balancing mitochondrial heterogeneity and how the disruption of balancing heterogeneity leads to impaired tissue function and disease onset.

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 970-P
Author(s):  
KRISHNAMOORTHY SATHEESH ◽  
CHAMUKUTTAN SNEHALATHA ◽  
ARUN NANDITHA ◽  
ARUN RAGHAVAN ◽  
RAMACHANDRAN VINITHA ◽  
...  

2020 ◽  
Vol 26 ◽  
Author(s):  
Margarita A. Sazonova ◽  
Anastasia I. Ryzhkova ◽  
Vasily V. Sinyov ◽  
Marina D. Sazonova ◽  
Tatiana V. Kirichenko ◽  
...  

Background: The present review article considers some chronic diseases of vascular and metabolic genesis, the causes of which may be mitochondrial dysfunction. Very often, in the long course of the disease, complications may occur, leading to myocardial infarction or ischemic stroke and as a result, death.In particular, a large percentage of human deaths nowadays belongs to cardiovascular diseases such as coronary heart disease (CHD), arterial hypertension, cardiomyopathies and type 2 diabetes mellitus. Objective: The aim of the present review was the analysis of literature sources, devoted to an investigation of a link of mitochondrial DNA mutations with chronic diseases of vascular and metabolic genesis, Results: The analysis of literature indicates the association of the mitochondrial genome mutations with coronary heart disease, type 2 diabetes mellitus, hypertension and various types of cardiomyopathies. Conclusion: The detected mutations can be used to analyze the predisposition to chronic diseases of vascular and metabolic genesis. They can also be used to create molecular-cell models necessary to evaluate the effectiveness of drugs developed for treatment of these pathologies. MtDNA mutations associated withthe absence of diseases of vascular and metabolic genesis could be potential candidates for gene therapy of diseases of vascular and metabolic genesis.


2014 ◽  
Vol 94 (2) ◽  
pp. 186-197 ◽  
Author(s):  
Jennifer R. Kulzer ◽  
Michael L. Stitzel ◽  
Mario A. Morken ◽  
Jeroen R. Huyghe ◽  
Christian Fuchsberger ◽  
...  

2015 ◽  
Vol 129 (12) ◽  
pp. 1083-1096 ◽  
Author(s):  
Joseph B. McPhee ◽  
Jonathan D. Schertzer

The bacteria that inhabit us have emerged as factors linking immunity and metabolism. Changes in our microbiota can modify obesity and the immune underpinnings of metabolic diseases such as Type 2 diabetes. Obesity coincides with a low-level systemic inflammation, which also manifests within metabolic tissues such as adipose tissue and liver. This metabolic inflammation can promote insulin resistance and dysglycaemia. However, the obesity and metabolic disease-related immune responses that are compartmentalized in the intestinal environment do not necessarily parallel the inflammatory status of metabolic tissues that control blood glucose. In fact, a permissive immune environment in the gut can exacerbate metabolic tissue inflammation. Unravelling these discordant immune responses in different parts of the body and establishing a connection between nutrients, immunity and the microbiota in the gut is a complex challenge. Recent evidence positions the relationship between host gut barrier function, intestinal T cell responses and specific microbes at the crossroads of obesity and inflammation in metabolic disease. A key problem to be addressed is understanding how metabolite, immune or bacterial signals from the gut are relayed and transferred into systemic or metabolic tissue inflammation that can impair insulin action preceding Type 2 diabetes.


2011 ◽  
Vol 8 (1) ◽  
pp. 2 ◽  
Author(s):  
Marina Casimir ◽  
Paula B de Andrade ◽  
Asllan Gjinovci ◽  
Jean-Pierre Montani ◽  
Pierre Maechler ◽  
...  

Author(s):  
Claire Laurens ◽  
Cedric Moro

AbstractOver the past decades, obesity and its metabolic co-morbidities such as type 2 diabetes (T2D) developed to reach an endemic scale. However, the mechanisms leading to the development of T2D are still poorly understood. One main predictor for T2D seems to be lipid accumulation in “non-adipose” tissues, best known as ectopic lipid storage. A growing body of data suggests that these lipids may play a role in impairing insulin action in metabolic tissues, such as liver and skeletal muscle. This review aims to discuss recent literature linking ectopic lipid storage and insulin resistance, with emphasis on lipid deposition in skeletal muscle. The link between skeletal muscle lipid content and insulin sensitivity, as well as the mechanisms of lipid-induced insulin resistance and potential therapeutic strategies to alleviate lipotoxic lipid pressure in skeletal muscle will be discussed.


2004 ◽  
Vol 377 (3) ◽  
pp. 709-716 ◽  
Author(s):  
Emma T. A. S. JAIKARAN ◽  
Melanie R. NILSSON ◽  
Anne CLARK

Islet amyloid polypeptide (IAPP), or ‘amylin’, is co-stored with insulin in secretory granules of pancreatic islet β-cells. In Type 2 diabetes, IAPP converts into a β-sheet conformation and oligomerizes to form amyloid fibrils and islet deposits. Granule components, including insulin, inhibit spontaneous IAPP fibril formation in vitro. To determine the mechanism of this inhibition, molecular interactions of insulin with human IAPP (hIAPP), rat IAPP (rIAPP) and other peptides were examined using surface plasmon resonance (BIAcore), CD and transmission electron microscopy (EM). hIAPP and rIAPP complexed with insulin, and this reaction was concentration-dependent. rIAPP and insulin, but not pro-insulin, bound to hIAPP. Insulin with a truncated B-chain, to prevent dimerization, also bound hIAPP. In the presence of insulin, hIAPP did not spontaneously develop β-sheet secondary structure or form fibrils. Insulin interacted with pre-formed IAPP fibrils in a regular repeating pattern, as demonstrated by immunoEM, suggesting that the binding sites for insulin remain exposed in hIAPP fibrils. Since rIAPP and hIAPP form complexes with insulin (and each other), this could explain the lack of amyloid fibrils in transgenic mice expressing hIAPP. It is likely that IAPP fibrillogenesis is inhibited in secretory granules (where the hIAPP concentration is in the millimolar range) by heteromolecular complex formation with insulin. Alterations in the proportions of insulin and IAPP in granules could disrupt the stability of the peptide. The increase in the proportion of unprocessed pro-insulin produced in Type 2 diabetes could be a major factor in destabilization of hIAPP and induction of fibril formation.


Sign in / Sign up

Export Citation Format

Share Document