scholarly journals Characterization of Cell-Envelope Proteinases from Two Lacticaseibacillus casei Strains Isolated from Parmigiano Reggiano Cheese

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 139
Author(s):  
Lisa Solieri ◽  
Laura Sola ◽  
Amanda Vaccalluzzo ◽  
Cinzia Randazzo ◽  
Serena Martini ◽  
...  

In the present work, two cell-envelope proteinases (CEPs) from Lacticaseibacillus casei strains PRA205 and 2006 were characterized at both the biochemical and genetic levels. The genomes of both L. casei strains included two putative CEPs genes prtP2 and prtR1, but only prtR1 was transcribed. The extracted PrtR1 proteinases were serine proteinases with optimal activity at 40 °C and pH 7.5, and were activated by Ca2+ ions. Interestingly, PrtR1 from L. casei PRA205 exhibited high residual activity at pH 4 and at 5 °C, suggesting its possible exploitation for fermented food production. The caseinolytic activity against αS1- and β-casein indicated that both PrtR1s belonged to the PI/PIII type. These PrtR1s cleaved β-casein peptide bonds preferentially when amino acid M or N was present at the P1 subsite and amino acids A and D were at the P1′ subsite. Several bioactive peptides were found to be released from PrtR1 after αs1- and β-casein hydrolysis.

2004 ◽  
Vol 37 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Bernard F. Gibbs ◽  
Alexandre Zougman ◽  
Robert Masse ◽  
Catherine Mulligan

2021 ◽  
Vol 9 (11) ◽  
pp. 2288
Author(s):  
Serena Martini ◽  
Mattia Bonazzi ◽  
Ilaria Malorgio ◽  
Valentina Pizzamiglio ◽  
Davide Tagliazucchi ◽  
...  

Whey is the main byproduct of the dairy industry and contains sugars (lactose) and proteins (especially serum proteins and, at lesser extent, residual caseins), which can be valorized by the fermentative action of yeasts. In the present study, we characterized the spoilage yeast population inhabiting natural whey starter (NWS), the undefined starter culture of thermophilic lactic acid bacteria used in Parmigiano Reggiano (PR) cheesemaking, and evaluated thermotolerance, mating type, and the aptitude to produce ethanol and bioactive peptides from whey lactose and proteins, respectively, in a selected pool of strains. PCR-RFLP assay of ribosomal ITS regions and phylogenetic analysis of 26S rDNA D1/D2 domains showed that PR NWS yeast population consists of the well-documented Kluyveromyces marxianus, as well as of other species (Saccharomyces cerevisiae, Wickerhamiella pararugosa, and Torulaspora delbrueckii), with multiple biotypes scored within each species as demonstrated by (GTG)5-based MSP-PCR. Haploid and diploid K. marxianus strains were identified through MAT genotyping, while thermotolerance assay allowed the selection of strains suitable to grow up to 48 °C. In whey fermentation trials, one thermotolerant strain was suitable to release ethanol with a fermentation efficiency of 86.5%, while another candidate was able to produce the highest amounts of both ethanol and bioactive peptides with potentially anti-hypertensive function. The present work demonstrated that PR NWS is a reservoir of ethanol and bioactive peptides producer yeasts, which can be exploited to valorize whey, in agreement with the principles of circularity and sustainability.


Author(s):  
Serena Martini ◽  
Mattia Bonazzi ◽  
Ilaria Malorgio ◽  
Valentina Pizzamiglio ◽  
Davide Tagliazucchi ◽  
...  

Whey is the main by-product of the dairy industry and contains sugars (lactose) and proteins (especially serum proteins and, at lesser extent, residual caseins), which can be valorized by the fermentative action of yeasts. In the present study, we characterized the spoilage yeast fraction inhabiting natural whey starter (NWS), the undefined starter culture of thermophilic lactic acid bacteria used in Parmigiano Reggiano (PR) cheesemaking, and evaluated thermotolerance, mating type, and the aptitude to produce ethanol and bioactive peptides from whey lactose and proteins, respectively, in a selected pool of strains. We found that PR NWS yeast population consists of other species (Saccharomyces cerevisiae, Wickerhamiella pararugosa, and Torulaspora delbrueckii) in addition to the well-documented Kluyveromyces marxianus, with multiple biotypes scored within each species. Haploid and diploid K. marxianus strains were identified through MAT genotyping, while thermotolerance assay allowed the selection of strains suitable to grow up to 48 °C. In whey fermentation assay, one thermotolerant strain was suitable to release ethanol with yield of 86.5%, while another candidate was able to produce the highest amounts of both ethanol and bioactive peptides with potentially anti-hypertensive function. The present work demonstrated that PR NWS is a reservoir of ethanol and bioactive peptides producer yeasts, which can be exploited to valorize whey, in agreement with the principles of circularity and sustainability.


2021 ◽  
pp. 1-11
Author(s):  
Monther T. Sadder ◽  
Ahmad F. Ateyyeh ◽  
Hodayfah Alswalmah ◽  
Adel M. Zakri ◽  
Abdullah A. Alsadon ◽  
...  

Abstract Low-quality water and soil salinization are increasingly becoming limiting factors for food production, including olive – a major fruit crop in several parts of the world. Identifying putative salinity-stress tolerance in olive would be helpful in the future development of new tolerant varieties. In this study, novel salinity-responsive biomarkers (SRBs) were characterized in the species, namely, monooxygenase 1 (OeMO1), cation calcium exchanger 1 (OeCCX1), salt tolerance protein (OeSTO), proteolipid membrane potential modulator (OePMP3), universal stress protein (OeUSP2), adaptor protein complex 4 medium mu4 subunit (OeAP-4), WRKY1 transcription factor (OeWRKY1) and potassium transporter 2 (OeKT2). Unique structural features were highlighted for encoded proteins as compared with other plant homologues. The expression of olive SRBs was investigated in leaves of young plantlets of two cultivars, ‘Nabali’ (moderately tolerant) and ‘Picual’ (tolerant). At 60 mM NaCl stress level, OeMO1, OeSTO, OePMP3, OeUSP2, OeAP-4 and OeWRKY1 were up-regulated in ‘Nabali’ as compared with ‘Picual’. On the other hand, OeCCX1 and OeKT2 were up-regulated at three stress levels (30, 60 and 90 mM NaCl) in ‘Picual’ as compared to ‘Nabali’. Salinity tolerance in olive presumably engages multiple sets of responsive genes triggered by different stress levels.


Author(s):  
Nur Syafiqah Muhammed ◽  
Nurulfarhana Hussin ◽  
Aik Siang Lim ◽  
Mohd Anuar Jonet ◽  
Shaza Eva Mohamad ◽  
...  

2009 ◽  
Vol 15 (6) ◽  
pp. 545-552 ◽  
Author(s):  
Erzheng Su ◽  
Tao Xia ◽  
Liping Gao ◽  
Qianying Dai ◽  
Zhengzhu Zhang

Tannase was effectively immobilized on alginate by the method of crosslinking-entrapment-crosslinking with a high activity recovery of 76.6%. The properties of immobilized tannase were investigated. Its optimum temperature was determined to be 35 ° C, decreasing 10 °C compared with that of free enzyme, whereas the optimum pH of 5.0 did not change. The thermal and pH stabilities of immobilized tannase increased to some degree. The kinetic parameter, Km, for immobilized tannase was estimated to be 11.6 × 10-4 mol/L. Fe2+ and Mn2+ could activate the activity of immobilized tannase. The immobilized tannase was also applied to treat the tea beverage to investigate its haze-removing effect. The content of non-estern catechins in green tea, black tea and oolong tea increased by 52.17%, 12.94% and 8.83%, respectively. The content of estern catechins in green tea, oolong tea and black tea decreased by 20.0%, 16.68% and 5.04%, respectively. The anti-sediment effect of green tea infusion treated with immobilized tannase was significantly increased. The storage stability and reusability of the immobilized tannase were improved greatly, with 72.5% activity retention after stored for 42 days and 86.9% residual activity after repeatedly used for 30 times.


1983 ◽  
Vol 50 (4) ◽  
pp. 469-480 ◽  
Author(s):  
Paul A. Grieve ◽  
Barry J. Kitchen ◽  
John R. Dulley ◽  
John Bartley

SUMMARYAn extract ofKluyveromyces lactis416 and a β-galactosidase preparation (Maxilact 40000) contaminated with proteinase, showed similar pH profiles of caseinolytic activity. Similar modes of casein hydrolysis (κ-, > αs-, ≥ β-) were observed at pH 5·0 (the pH of Cheddar cheese), without detection of bitterness. The contaminated Maxilact preparation contained similar proteinase types to those detected in an autolysate ofK. lactis. Both the autolysate and the Maxilact preparation contained acid endopeptidase (proteinase A), serine endopeptidase (proteinase B) and serine exopeptidase (carboxypeptidase Y) activities. Some aminopeptidase activity was also detected in both preparations. There were some differences in apparent molecular weight and charge properties between proteinase A and B and carboxypeptidase Y from the 2 proteinase sources.


The Analyst ◽  
2013 ◽  
Vol 138 (18) ◽  
pp. 5371 ◽  
Author(s):  
Denys Naumenko ◽  
Valentinas Snitka ◽  
Elena Serviene ◽  
Ingrida Bruzaite ◽  
Boris Snopok

Sign in / Sign up

Export Citation Format

Share Document