scholarly journals Fractionation of Heavy Metals in Multi-Contaminated Soil Treated with Biochar Using the Sequential Extraction Procedure

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Chen-Yao Chu ◽  
Tzu-Hsing Ko

Heavy metal-contaminated soils were leached with various acid reagents, and a series of treatments was assessed to understand soil fertility after acid leaching. Aqua regia digestion and a five-step sequential extraction procedure were applied to determine heavy metal distribution. The average total concentrations of Zn, Cd, Cu, and Pb for contaminated soil were 1334, 25, 263, and 525 mg·kg−1 based on the ICP/AES quantitative analysis. Other than Pb extracted by H2SO4, over 50% removal efficiency of other heavy metals was achieved. A five-step sequential extraction revealed that the bound-to-carbonate and bound-to-Fe-Mn oxides were the major forms of the heavy metals in the soil. The addition of organic manure considerably promoted soil fertility and increased soil pH after acid leaching. Seed germination experiments demonstrated that after acid leaching, the soil distinctly inhibited plant growth and the addition of manure enhanced seed germination rate from 35% to 84%. Furthermore, the procedure of soil turnover after acid leaching and manure addition greatly increased seed germination rate by 61% and shortened the initial germination time. Seed germination in untreated soil was superior to that in acid-leached soil, illustrating that the phytotoxic effect of acid leaching is more serious than that of heavy metals.


2014 ◽  
Vol 675-677 ◽  
pp. 654-657
Author(s):  
Qiu Jun Li ◽  
Rui Jie Zhang ◽  
Ying Hui Wang ◽  
Da Rong Li

In this study we compared the efficiency of four kinds of amendments (silkworm excrement, coconut husk, red mud, sepiolite) and their mixtures to immobilize the heavy metals present in a contaminated acidic soil (Pb:420 mg ·kg−1; Zn :334 mg· kg−1) and to influence several enzymatic activities. The results showed that, silkworm excrement, coconut husk and their mixtures, which had high pH and/or high content of organic matter, reduced exchangeable Pb in the soil by 18% to 46%, and reduced available Zn by 24% to 35%, which was more efficacious than single sepiolite. The complex of silkworm excrement and red mud had a great influence on soil pH, while coconut husk increased the content of organic matter in soil significantly.


2009 ◽  
Vol 55 (No. 1) ◽  
pp. 42-49 ◽  
Author(s):  
J. Matula

The aim of the paper was to contribute to the acquisition of background data for the specification of safe boron levels in soils in relation to diagnostics by multi-nutrient soil tests and to CEC (cation exchange capacity) value of soil, pH and soil organic matter. The research was conducted on 24 soils. Sorption was determined after 97 days from the application of B at the rates of 0, 1, 2.5, 5 mg B/kg in H<sub>3</sub>BO<sub>3</sub>. The closest regression of B-sorption was with the CEC value of soil in NH<sub>4</sub>-acetate and water tests and it increased with the increasing application of B (regression at a rate of 5 ppm B; NH<sub>4</sub>-acetate: linear <I>R</I><sup = 0.632, polynomial 2<sup>nd</sup> <I>R</I><sup = 0.644; water: linear R<sup = 0.644, polynomial 2<sup>nd</sup> <I>R</I><sup = 0.599). No relationship was found in the Mehlich 3 test. Regressions of B sorption on pH value were substantially lower. The relationship of B sorption with soil organic matter was similar to CEC, but less close. In the NH<sub>4</sub>-acetate soil test, after the correction of CEC value of soil by pH deviations from the optimum, regression was improved (linear <I>R</I><sup = 0.821, polynomial 2<sup>nd</sup> <I>R</I><sup = 0.837).


2021 ◽  
Vol 232 (5) ◽  
Author(s):  
Dawid Kupka ◽  
Mateusz Kania ◽  
Marcin Pietrzykowski ◽  
Adam Łukasik ◽  
Piotr Gruba

AbstractIntensified vehicular traffic causes increased heavy metal contamination of the environment. We investigated the heavy metal chemistry of soils located under silver fir stands in the vicinity of Poland’s S7 roadway. Three sampling sites were located in fir stands in central Poland. Fieldwork included soil sampling of the organic (O) horizon and mineral (A) topsoil. We analyzed the soil pH, carbon (C) and nitrogen (N) concentration, and the HCl-extractable forms of sodium (Na) and heavy metals: copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). The stoichiometric ratios Cu:C, Ni:C, Pb:C, and Zn:C were also calculated. In all sites, a higher Na concentration was found in the 0–10 m from the forest edge. This zone was characterized by increased pH in the O horizon, increased Zn and Ni in the A horizon, and a decreased Pb in the O horizon. There was no clear pattern for the Cu concentration. The Ni:C and Zn:C ratios were correlated with pH, while Pb:C and Cu:C ratios were correlated with the clay minerals. HCl-extractable Ni and Zn concentrations in A horizon were greater near the roadway, revealing strong pH dependency. The roadway affects the geochemical background of the topsoil in the nearby fir stands. Mechanistically, we suggest that Na increases the soil pH and therefore enhances the ability of soil organic matter to bind Ni and Zn by releasing hydrogen from soil organic matter functional groups into the soil solution. A depleted Pb near the road was likely owing to the strong competition from Na.


Weed Science ◽  
1985 ◽  
Vol 33 (4) ◽  
pp. 564-568 ◽  
Author(s):  
Wondimagegnehu Mersie ◽  
Chester L. Foy

The phytotoxicity of chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl] benzenesulfonamide} was compared in six soils, and the relationship of activity to soil physical and chemical properties was evaluated. The influence of soil pH (4.2 to 7.8) on phytotoxicity and adsorption of chlorsulfuron incorporated into high-organic-matter soil was also studied. For the phytotoxicity studies, corn (Zea maysL. ‘Pioneer 3320’) was used as the bioassay plant. Organic matter was the soil variable most highly correlated with chlorsulfuron phytotoxicity. There was an inverse relationship between phytotoxicity and organic matter. No significant relationship between clay content and chlorsulfuron toxicity was observed. The adsorption of chlorsulfuron decreased with increasing soil pH while desorption was greater at alkaline pH. Phytotoxicity of chlorsulfuron increased with increasing soil pH and reached a maximum at pH 6.9.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1326
Author(s):  
Calvin F. Glaspie ◽  
Eric A. L. Jones ◽  
Donald Penner ◽  
John A. Pawlak ◽  
Wesley J. Everman

Greenhouse studies were conducted to evaluate the effects of soil organic matter content and soil pH on initial and residual weed control with flumioxazin by planting selected weed species in various lab-made and field soils. Initial control was determined by planting weed seeds into various lab-made and field soils treated with flumioxazin (71 g ha−1). Seeds of Echinochloa crus-galli (barnyard grass), Setaria faberi (giant foxtail), Amaranthus retroflexus (redroot pigweed), and Abutilon theophrasti (velvetleaf) were incorporated into the top 1.3 cm of each soil at a density of 100 seeds per pot, respectively. Emerged plants were counted and removed in both treated and non-treated pots two weeks after planting and each following week for six weeks. Flumioxazin control was evaluated by calculating percent emergence of weeds in treated soils compared to the emergence of weeds in non-treated soils. Clay content was not found to affect initial flumioxazin control of any tested weed species. Control of A. theophrasti, E. crus-galli, and S. faberi was reduced as soil organic matter content increased. The control of A. retroflexus was not affected by organic matter. Soil pH below 6 reduced flumioxazin control of A. theophrasti, and S. faberi but did not affect the control of A. retroflexus and E. crus-galli. Flumioxazin residual control was determined by planting selected weed species in various lab-made and field soils 0, 2, 4, 6, and 8 weeks after treatment. Eight weeks after treatment, flumioxazin gave 0% control of A. theophrasti and S. faberi in all soils tested. Control of A. retroflexus and Chenopodium album (common lambsquarters) was 100% for the duration of the experiment, except when soil organic matter content was greater than 3% or the soil pH 7. Eight weeks after treatment, 0% control was only observed for common A. retroflexus and C. album in organic soil (soil organic matter > 80%) or when soil pH was above 7. Control of A. theophrasti and S. faberi decreased as soil organic matter content and soil pH increased. Similar results were observed when comparing lab-made soils to field soils; however, differences in control were observed between lab-made organic matter soils and field organic matter soils. Results indicate that flumioxazin can provide control ranging from 75–100% for two to six weeks on common weed species.


2017 ◽  
Vol 109 (2) ◽  
pp. 706-717 ◽  
Author(s):  
Rajan Ghimire ◽  
Stephen Machado ◽  
Prakriti Bista

Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 549-556 ◽  
Author(s):  
Linyou Lü ◽  
Ruzhen Wang ◽  
Heyong Liu ◽  
Jinfei Yin ◽  
Jiangtao Xiao ◽  
...  

Abstract. Soil coarseness is the main process decreasing soil organic matter and threatening the productivity of sandy grasslands. Previous studies demonstrated negative effect of soil coarseness on soil carbon storage, but less is known about how soil base cations (exchangeable Ca, Mg, K, and Na) and available micronutrients (available Fe, Mn, Cu, and Zn) response to soil coarseness. In a semi-arid grassland of Northern China, a field experiment was initiated in 2011 to mimic the effect of soil coarseness on soil base cations and available micronutrients by mixing soil with different mass proportions of sand: 0 % coarse elements (C0), 10 % (C10), 30 % (C30), 50 % (C50), and 70 % (C70). Soil coarseness significantly increased soil pH in three soil depths of 0–10, 10–20 and 20–40 cm with the highest pH values detected in C50 and C70 treatments. Soil fine particles (smaller than 0.25 mm) significantly decreased with the degree of soil coarseness. Exchangeable Ca and Mg concentrations significantly decreased with soil coarseness degree by up to 29.8 % (in C70) and 47.5 % (in C70), respectively, across three soil depths. Soil available Fe, Mn, and Cu significantly decreased with soil coarseness degree by 62.5, 45.4, and 44.4 %, respectively. As affected by soil coarseness, the increase of soil pH, decrease of soil fine particles (including clay), and decline in soil organic matter were the main driving factors for the decrease of exchangeable base cations (except K) and available micronutrients (except Zn) through soil profile. Developed under soil coarseness, the loss and redistribution of base cations and available micronutrients along soil depths might pose a threat to ecosystem productivity of this sandy grassland.


Sign in / Sign up

Export Citation Format

Share Document