scholarly journals The Histamine H4 Receptor Participates in the Anti-Neuropathic Effect of the Adenosine A3 Receptor Agonist IB-MECA: Role of CD4+ T Cells

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1447
Author(s):  
Laura Micheli ◽  
Mariaconcetta Durante ◽  
Elena Lucarini ◽  
Silvia Sgambellone ◽  
Laura Lucarini ◽  
...  

A3 adenosine receptor (A3AR) agonists have emerged as potent relievers of neuropathic pain by a T cell-mediated production of IL-10. The H4 histamine receptor (H4R), also implicated in pain modulation, is expressed on T cells playing a preeminent role in its activation and release of IL-10. To improve the therapeutic opportunities, this study aimed to verify the hypothesis of a possible cross-talk between A3AR and H4R in the resolution of neuropathic pain. In the mouse model of Chronic Constriction Injury (CCI), the acute intraperitoneal co-administration of the A3AR agonist IB-MECA (0.5 mg/kg) and the H4R agonist VUF 8430 (10 mg/kg), were additive in counteracting mechano-allodynia increasing IL-10 plasma levels. In H4R−/− mice, IB-MECA activity was reduced, lower pain relief and lower modulation of plasma IL-1β, TNF-α, IL-6 and IL-10 were shown. The complete anti-allodynia effect of IB-MECA in H4R−/− mice was restored after intravenous administration of CD4+ T cells obtained from naïve wild type mice. In conclusion, a role of the histaminergic system in the mechanism of A3AR-mediated neuropathic pain relief was suggested highlighting the driving force evoked by CD4+ T cells throughout IL-10 up-regulation.

Pneumologie ◽  
2014 ◽  
Vol 68 (S 01) ◽  
Author(s):  
K Milger ◽  
Y Yu ◽  
E Brudy ◽  
M Irmler ◽  
A Skapenko ◽  
...  
Keyword(s):  
T Cells ◽  

2021 ◽  
Vol 22 (5) ◽  
pp. 2713
Author(s):  
Sun-Hye Shin ◽  
Kyung-Ah Cho ◽  
Hee-Soo Yoon ◽  
So-Yeon Kim ◽  
Hee-Yeon Kim ◽  
...  

(1) Background: six mammalian ceramide synthases (CerS1–6) determine the acyl chain length of sphingolipids (SLs). Although ceramide levels are increased in murine allergic asthma models and in asthmatic patients, the precise role of SLs with specific chain lengths is still unclear. The role of CerS2, which mainly synthesizes C22–C24 ceramides, was investigated in immune responses elicited by airway inflammation using CerS2 null mice. (2) Methods: asthma was induced in wild type (WT) and CerS2 null mice with ovalbumin (OVA), and inflammatory cytokines and CD4 (cluster of differentiation 4)+ T helper (Th) cell profiles were analyzed. We also compared the functional capacity of CD4+ T cells isolated from WT and CerS2 null mice. (3) Results: CerS2 null mice exhibited milder symptoms and lower Th2 responses than WT mice after OVA exposure. CerS2 null CD4+ T cells showed impaired Th2 and increased Th17 responses with concomitant higher T cell receptor (TCR) signal strength after TCR stimulation. Notably, increased Th17 responses of CerS2 null CD4+ T cells appeared only in TCR-mediated, but not in TCR-independent, treatment. (4) Conclusions: altered Th2/Th17 immune response with higher TCR signal strength was observed in CerS2 null CD4+ T cells upon TCR stimulation. CerS2 and very-long chain SLs may be therapeutic targets for Th2-related diseases such as asthma.


2015 ◽  
Vol 12 (1) ◽  
Author(s):  
Zorica Stojić-Vukanić ◽  
Mirjana Nacka-Aleksić ◽  
Ivan Pilipović ◽  
Ivana Vujnović ◽  
Veljko Blagojević ◽  
...  
Keyword(s):  
T Cells ◽  
Gm Csf ◽  

Virology ◽  
2009 ◽  
Vol 385 (2) ◽  
pp. 294-302 ◽  
Author(s):  
Masaya Takemoto ◽  
Takayoshi Imasawa ◽  
Koichi Yamanishi ◽  
Yasuko Mori

Author(s):  
Njabulo Ngwenyama ◽  
Annet Kirabo ◽  
Mark Aronovitz ◽  
Francisco Velázquez ◽  
Francisco Carrillo-Salinas ◽  
...  

Background: Despite the well-established association between T cell-mediated inflammation and non-ischemic heart failure (HF), the specific mechanisms triggering T cell activation during the progression of HF and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T cell receptor (TCR) activation and promote HF. Methods: We used transverse aortic constriction (TAC) in mice to trigger myocardial oxidative stress and T cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77 GFP reporter mice, which transiently express GFP upon TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII -/- mice, and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG-protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species (ROS) and IsoLGs in eliciting T cell immune responses in vivo by treating mice with the antioxidant TEMPOL, and the IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) during TAC, and ex-vivo in mechanistic studies of CD4+ T cell proliferation in response to IsoLG-modified cardiac proteins. Results: We discovered that TCR antigen recognition increases in the left ventricle (LV) as cardiac dysfunction progresses, and identified a limited repertoire of activated CD4+ T cell clonotypes in the LV. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction since MhcII -/- mice reconstituted with CD4+ T cells, and OTII mice immunized with their cognate antigen were protected from TAC-induced cardiac dysfunction despite the presence of LV-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-HOBA reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in ROS dependent dendritic cell accumulation of IsoLG-protein adducts which induced robust CD4+ T cell proliferation. Conclusions: Collectively, our study demonstrates an important role of ROS-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T cell activation within the heart.


Sign in / Sign up

Export Citation Format

Share Document