scholarly journals Nostocyclopeptides as New Inhibitors of 20S Proteasome

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1483
Author(s):  
Anna Fidor ◽  
Katarzyna Cekała ◽  
Ewa Wieczerzak ◽  
Marta Cegłowska ◽  
Franciszek Kasprzykowski ◽  
...  

Nostocyclopeptides (Ncps) are a small class of bioactive nonribosomal peptides produced solely by cyanobacteria of the genus Nostoc. In the current work, six Ncps were isolated from Nostoc edaphicum strain CCNP1411. The bioactivity of these compounds was tested in vitro against 20S proteasome, a proteolytic complex that plays an important role in maintaining cellular proteostasis. Dysfunction of the complex leads to many pathological disorders. The assays indicated selective activity of specific Ncp variants. For two linear peptide aldehydes, Ncp-A2-L and Ncp-E2-L, the inhibitory effects on chymotrypsin-like activity were revealed, while the cyclic variant, Ncp-A2, inactivated the trypsin-like site of this enzymatic complex. The aldehyde group was confirmed to be an important element of the chymotrypsin-like activity inhibitors. The nostocyclopeptides, as novel inhibitors of 20S proteasome, increased the number of natural products that can be considered potential regulators of cellular processes.

2005 ◽  
Vol 86 (9) ◽  
pp. 2595-2603 ◽  
Author(s):  
Lionel Ballut ◽  
Martin Drucker ◽  
Martine Pugnière ◽  
Florence Cambon ◽  
Stéphane Blanc ◽  
...  

The proteasome is a multicatalytic complex involved in many cellular processes in eukaryotes, such as protein and RNA turnover, cell division, signal transduction, transcription and translation. Intracellular pathogens are targets of its enzymic activities, and a number of animal viruses are known to interfere with these activities. The first evidence that a plant virus protein, the helper component-proteinase (HcPro) of Lettuce mosaic virus (LMV; genus Potyvirus), interferes with the 20S proteasome ribonuclease is reported here. LMV infection caused an aggregation of the 20S proteasome to high-molecular mass structures in vivo, and specific binding of HcPro to the proteasome was confirmed in vitro using two different approaches. HcPro inhibited the 20S endonuclease activity in vitro, while its proteolytic activities were unchanged or slightly stimulated. This ability of HcPro, a pathogenicity regulator of potyviruses, to interfere with some of the catalytic functions of the 20S proteasome suggests the existence of a novel type of defence and counter-defence interplay in the course of interaction between potyviruses and their hosts.


2018 ◽  
Vol 115 (28) ◽  
pp. E6477-E6486 ◽  
Author(s):  
Beata Jonik-Nowak ◽  
Thomas Menneteau ◽  
Didier Fesquet ◽  
Véronique Baldin ◽  
Catherine Bonne-Andrea ◽  
...  

PA28γ is a nuclear activator of the 20S proteasome involved in the regulation of several essential cellular processes, such as cell proliferation, apoptosis, nuclear dynamics, and cellular stress response. Unlike the 19S regulator of the proteasome, which specifically recognizes ubiquitylated proteins, PA28γ promotes the degradation of several substrates by the proteasome in an ATP- and ubiquitin-independent manner. However, its exact mechanisms of action are unclear and likely involve additional partners that remain to be identified. Here we report the identification of a cofactor of PA28γ, PIP30/FAM192A. PIP30 binds directly and specifically via its C-terminal end and in an interaction stabilized by casein kinase 2 phosphorylation to both free and 20S proteasome-associated PA28γ. Its recruitment to proteasome-containing complexes depends on PA28γ and its expression increases the association of PA28γ with the 20S proteasome in cells. Further dissection of its possible roles shows that PIP30 alters PA28γ-dependent activation of peptide degradation by the 20S proteasome in vitro and negatively controls in cells the presence of PA28γ in Cajal bodies by inhibition of its association with the key Cajal body component coilin. Taken together, our data show that PIP30 deeply affects PA28γ interactions with cellular proteins, including the 20S proteasome, demonstrating that it is an important regulator of PA28γ in cells and thus a new player in the control of the multiple functions of the proteasome within the nucleus.


Author(s):  
Pınar Ercan ◽  
Sedef Nehir El

Abstract. The goals of this study were to determine and evaluate the bioaccessibility of total anthocyanin and procyanidin in apple (Amasya, Malus communis), red grape (Papazkarası, Vitis vinifera) and cinnamon (Cassia, Cinnamomum) using an in vitro static digestion system based on human gastrointestinal physiologically relevant conditions. Also, in vitro inhibitory effects of these foods on lipid (lipase) and carbohydrate digestive enzymes (α-amylase and α-glucosidase) were performed with before and after digested samples using acarbose and methylumbelliferyl oleate (4MUO) as the positive control. While the highest total anthocyanin content was found in red grape (164 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432 ± 177.31 mg/100 g) (p < 0.05). The anthocyanin bioaccessibilities were found as 10.2 ± 1%, 8.23 ± 0.64%, and 8.73 ± 0.70% in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57 ± 0.71%, 14.08 ± 0.74% and 18.75 ± 1.49%, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544 ± 21.94, 445 ± 15.67, 1592 ± 17.58 μg/mL, respectively), α-amylase (IC50 38.4 ± 7.26, 56.1 ± 3.60, 3.54 ± 0.86 μg/mL, respectively), and lipase (IC50 52.7 ± 2.05, 581 ± 54.14, 49.6 ± 2.72 μg/mL), respectively. According to our results apple, red grape and cinnamon have potential to inhibit of lipase, α-amylase and α-glucosidase digestive enzymes.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
YC Oh ◽  
YH Jeong ◽  
WK Cho ◽  
SJ Lee ◽  
JY Ma

1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


1972 ◽  
Vol 28 (01) ◽  
pp. 031-048 ◽  
Author(s):  
W. H. E Roschlau ◽  
R Gage

SummaryInhibition of blood platelet aggregation by brinolase (fibrinolytic enzyme from Aspergillus oryzae) has been demonstrated with human platelets in vitro and with dog platelets in vivo and in vitro, using both ADP and collagen as aggregating stimuli. It is suggested that the optimal inhibitory effects of brinolase occur indirectly through the generation of plasma fibrinogen degradation products, without compromising platelet viability, rather than by direct proteolysis of platelet structures.


1963 ◽  
Vol 09 (01) ◽  
pp. 164-174 ◽  
Author(s):  
Albert R Pappenhagen ◽  
J. L Koppel ◽  
John H Olwin

SummaryData have been presented on the in vitro effects of human chylomicra, low-density human plasma lipoproteins, and partially purified preparations of various phospholipids on human plasma euglobulin lysis. Euglobulin lysis was found to be accelerated by preparations of mixed soybean phospholipids (aso-lectin), cephalin, phosphatidyl inositol, phophatidyl serine and phosphatidyl ethanolamine. In contrast, it was found to be inhibited by preparations of human chylomicra, low-density human plasma liproproteins and lecithin. Inhibition of euglobulin lysis produced by any of these three agents could be diminished or completely overcome by the simultaneous presence of suitable levels of any one of the accelerating agents. In all cases studied, both inhibitory and accelerating effects were observed to be concentration-dependent. Evidence has been obtained to suggest that in the case of the accelerating agents the observed increased rate of euglobulin lysis is not a direct effect on lysis itself, but rather is due to more complete precipitation of plasminogen in the presence of these substances. On the other hand, it appears that the inhibitory effects observed are not related to the extent of plasminogen precipitation, but are actually true inhibitions of euglobulin lysis. The possible clinical significance of some of these observations has been briefly discussed.


2010 ◽  
Vol 30 (2) ◽  
pp. 212-214
Author(s):  
Hong QIAN ◽  
Nong XIAO ◽  
Zhi-feng QIN ◽  
Yan-jun LIU ◽  
Yi-jun SHEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document