scholarly journals DNA Matrix Operation Based on the Mechanism of the DNAzyme Binding to Auxiliary Strands to Cleave the Substrate

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1797
Author(s):  
Shaoxia Xu ◽  
Yuan Liu ◽  
Shihua Zhou ◽  
Qiang Zhang ◽  
Nikola K. Kasabov

Numerical computation is a focus of DNA computing, and matrix operations are among the most basic and frequently used operations in numerical computation. As an important computing tool, matrix operations are often used to deal with intensive computing tasks. During calculation, the speed and accuracy of matrix operations directly affect the performance of the entire computing system. Therefore, it is important to find a way to perform matrix calculations that can ensure the speed of calculations and improve the accuracy. This paper proposes a DNA matrix operation method based on the mechanism of the DNAzyme binding to auxiliary strands to cleave the substrate. In this mechanism, the DNAzyme binding substrate requires the connection of two auxiliary strands. Without any of the two auxiliary strands, the DNAzyme does not cleave the substrate. Based on this mechanism, the multiplication operation of two matrices is realized; the two types of auxiliary strands are used as elements of the two matrices, to participate in the operation, and then are combined with the DNAzyme to cut the substrate and output the result of the matrix operation. This research provides a new method of matrix operations and provides ideas for more complex computing systems.

2019 ◽  
Vol 16 (2) ◽  
pp. 507-511
Author(s):  
C. Kotteeswaran ◽  
V. Khanaa ◽  
A. Rajesh

The problem of bio molecular computing has been well studied and there are number of approaches discussed for the detection of false gene sequences. However, they suffer to achieve higher performance in the detection of false sequences. To improve the performance of detection of fake molecular patterns, an pattern based approach is discussed in this paper. As of the biomolecular strings a set of patterns, the method first identifies the list of sequences available and based on the set of patterns being maintained, the method identifies the list of patterns present in the gene sequence. Based on the sequences, the method identifies the incomplete and fake sequences and performs insertion and deletion using matrix operations. The method maintains number of patterns for the matrix insertion and deletion operation. For each pattern available, the method compute the bio molecular sequence weight. Finally a single sequence has been selected and based on the selected pattern, the method performs insertion and deletion operation. The proposed method produces efficient results on the detection as well as correction.


Author(s):  
Duanling Li ◽  
Zhonghai Zhang ◽  
Jian S. Dai ◽  
J. Michael McCarthy

Metamorphic mechanisms are a class of mechanisms that change their mobility during motions. The deployable and retractable characteristics of these unique mechanisms generate much interest in further investigating their behaviors and potential applications. This paper investigates the resultant configuration variation based on adjacency matrix operation and an improved approach to mechanism synthesis is proposed by adopting elementary matrix operations on the configuration states so as to avoid some omissions caused by existing methods. The synthesis procedure begins with a final configuration of the mechanism, then enumerates possible combinations of different links and associates added links with the binary inverse operations in the matrix transformations of the configuration states, and finally obtains a synthesis result. An algorithm is presented and the topological symmetry of links is used to reduce the number of mechanisms in the synthesis. Some mechanisms of this kind are illustrated as examples.


2012 ◽  
Vol 13 (2) ◽  
pp. 94
Author(s):  
Marcellinus Andy Rudhito ◽  
Sri Wahyuni ◽  
Ari Suparwanto ◽  
Frans Susilo

This paper aims to discuss the matrix algebra over interval max-plus algebra (interval matrix) and a method tosimplify the computation of the operation of them. This matrix algebra is an extension of matrix algebra over max-plus algebra and can be used to discuss the matrix algebra over fuzzy number max-plus algebra via its alpha-cut.The finding shows that the set of all interval matrices together with the max-plus scalar multiplication operationand max-plus addition is a semimodule. The set of all square matrices over max-plus algebra together with aninterval of max-plus addition operation and max-plus multiplication operation is a semiring idempotent. As reasoningfor the interval matrix operations can be performed through the corresponding matrix interval, because thatsemimodule set of all interval matrices is isomorphic with semimodule the set of corresponding interval matrix,and the semiring set of all square interval matrices is isomorphic with semiring the set of the correspondingsquare interval matrix.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 310
Author(s):  
Shih-Chia Chang ◽  
Ming-Tsang Lu ◽  
Tzu-Hui Pan ◽  
Chiao-Shan Chen

Although the electronic health (e-health) cloud computing system is a promising innovation, its adoption in the healthcare industry has been slow. This study investigated the adoption of e-health cloud computing systems in the healthcare industry and considered security functions, management, cloud service delivery, and cloud software for e-health cloud computing systems. Although numerous studies have determined factors affecting e-health cloud computing systems, few comprehensive reviews of factors and their relations have been conducted. Therefore, this study investigated the relations between the factors affecting e-health cloud computing systems by using a multiple criteria decision-making technique, in which decision-making trial and evaluation laboratory (DEMATEL), DANP (DEMATEL-based Analytic Network Process), and modified VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) approaches were combined. The intended level of adoption of an e-health cloud computing system could be determined by using the proposed approach. The results of a case study performed on the Taiwanese healthcare industry indicated that the cloud management function must be primarily enhanced and that cost effectiveness is the most significant factor in the adoption of e-health cloud computing. This result is valuable for allocating resources to decrease performance gaps in the Taiwanese healthcare industry.


2021 ◽  
Vol 11 (12) ◽  
pp. 5458
Author(s):  
Sangjun Kim ◽  
Kyung-Joon Park

A cyber-physical system (CPS) is the integration of a physical system into the real world and control applications in a computing system, interacting through a communications network. Network technology connecting physical systems and computing systems enables the simultaneous control of many physical systems and provides intelligent applications for them. However, enhancing connectivity leads to extended attack vectors in which attackers can trespass on the network and launch cyber-physical attacks, remotely disrupting the CPS. Therefore, extensive studies into cyber-physical security are being conducted in various domains, such as physical, network, and computing systems. Moreover, large-scale and complex CPSs make it difficult to analyze and detect cyber-physical attacks, and thus, machine learning (ML) techniques have recently been adopted for cyber-physical security. In this survey, we provide an extensive review of the threats and ML-based security designs for CPSs. First, we present a CPS structure that classifies the functions of the CPS into three layers: the physical system, the network, and software applications. Then, we discuss the taxonomy of cyber-physical attacks on each layer, and in particular, we analyze attacks based on the dynamics of the physical system. We review existing studies on detecting cyber-physical attacks with various ML techniques from the perspectives of the physical system, the network, and the computing system. Furthermore, we discuss future research directions for ML-based cyber-physical security research in the context of real-time constraints, resiliency, and dataset generation to learn about the possible attacks.


Author(s):  
VanDung Nguyen ◽  
Tran Trong Khanh ◽  
Tri D. T. Nguyen ◽  
Choong Seon Hong ◽  
Eui-Nam Huh

AbstractIn the Internet of Things (IoT) era, the capacity-limited Internet and uncontrollable service delays for various new applications, such as video streaming analysis and augmented reality, are challenges. Cloud computing systems, also known as a solution that offloads energy-consuming computation of IoT applications to a cloud server, cannot meet the delay-sensitive and context-aware service requirements. To address this issue, an edge computing system provides timely and context-aware services by bringing the computations and storage closer to the user. The dynamic flow of requests that can be efficiently processed is a significant challenge for edge and cloud computing systems. To improve the performance of IoT systems, the mobile edge orchestrator (MEO), which is an application placement controller, was designed by integrating end mobile devices with edge and cloud computing systems. In this paper, we propose a flexible computation offloading method in a fuzzy-based MEO for IoT applications in order to improve the efficiency in computational resource management. Considering the network, computation resources, and task requirements, a fuzzy-based MEO allows edge workload orchestration actions to decide whether to offload a mobile user to local edge, neighboring edge, or cloud servers. Additionally, increasing packet sizes will affect the failed-task ratio when the number of mobile devices increases. To reduce failed tasks because of transmission collisions and to improve service times for time-critical tasks, we define a new input crisp value, and a new output decision for a fuzzy-based MEO. Using the EdgeCloudSim simulator, we evaluate our proposal with four benchmark algorithms in augmented reality, healthcare, compute-intensive, and infotainment applications. Simulation results show that our proposal provides better results in terms of WLAN delay, service times, the number of failed tasks, and VM utilization.


2019 ◽  
Vol 7 (1) ◽  
pp. 218-225
Author(s):  
Milica Anđelić ◽  
Tamara Koledin ◽  
Zoran Stanić

Abstract We consider a particular class of signed threshold graphs and their eigenvalues. If Ġ is such a threshold graph and Q(Ġ ) is a quotient matrix that arises from the equitable partition of Ġ , then we use a sequence of elementary matrix operations to prove that the matrix Q(Ġ ) – xI (x ∈ ℝ) is row equivalent to a tridiagonal matrix whose determinant is, under certain conditions, of the constant sign. In this way we determine certain intervals in which Ġ has no eigenvalues.


SIMULATION ◽  
1965 ◽  
Vol 4 (2) ◽  
pp. 104-116 ◽  
Author(s):  
Otto A. Reichardt ◽  
Merlin W. Hoyt ◽  
W. Thad Lee

TRICE hybrid computing systems are currently in volved in aerospace simulations that are interesting and sophisticated. Indeed it would seem that these applications are so successful that an increasing wave of interest can be expected in such DDA applications. Unlike earlier DDA's, the parallel digital differential analyzer, we believe, combines more of the best fea tures of analog and digital machines: It boasts speed, accuracy, and ease of programming. Because the machine itself is entirely digital, it couples naturally and inexpensively with convention al digital computers. Unlike other digital machines with central memory and sequential operation, all elements of this DDA operate simultaneously, thus providing rapid solutions to nonlinear differential equations characteristic of analog computers. And like its analog cousin, our DDA is programmed read ily via a patchboard, by connecting its computing elements in direct correspondence to the elements of differential equations. In one sense, TRICE is more properly a hybrid— a unique combination of analog and digital machine characteristics—than are the combinations of analog and digital computers currently being interfaced. Yet it can also be connected with analog and/or digital computers. Here we would like to explain how TRICE works, compare its advantages as a hybrid element, and con clude with a review of some current applications.


Cloud computing is being heavily used for implementing different kinds of applications. Many of the client applications are being migrated to cloud for the reasons of cost and elasticity. Cloud computing is generally implemented on distributing computing wherein the Physical servers are heavily distributed considering both hardware and software, the connectivity among which is established through Internet. The cloud computing systems as such have many physical servers which contain many resources. The resources can be made to be shared among many users who are the tenants to the cloud computing system. The resources can be virtualized so as to provide shared resources to the clients. Scheduling is one of the most important task of a cloud computing system which is concerned with task scheduling, resource scheduling and scheduling Virtual Machin Migration. It is important to understand the issue of scheduling within a cloud computing system more in-depth so that any improvements with reference to scheduling can be investigated and implemented. For carrying in depth research, an OPEN source based cloud computing system is needed. OPEN STACK is one such OPEN source based cloud computing system that can be considered for experimenting the research findings that are related to cloud computing system. In this paper an overview on the way the Scheduling aspect per say has been implemented within OPEN STACK cloud computing system


Sign in / Sign up

Export Citation Format

Share Document