scholarly journals Transcriptomic-Based Quantification of the Epithelial-Hybrid-Mesenchymal Spectrum Across Biological Contexts

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Susmita Mandal ◽  
Tanishq Tejaswi ◽  
Rohini Janivara ◽  
Syamanthak Srikrishnan ◽  
Pradipti Thakur ◽  
...  

Epithelial-mesenchymal plasticity (EMP) underlies embryonic development, wound healing, and cancer metastasis and fibrosis. Cancer cells exhibiting EMP often have more aggressive behavior, characterized by drug resistance, and tumor-initiating and immuno-evasive traits. Thus, the EMP status of cancer cells can be a critical indicator of patient prognosis. Here, we compare three distinct transcriptomic-based metrics—each derived using a different gene list and algorithm—that quantify the EMP spectrum. Our results for over 80 cancer-related RNA-seq datasets reveal a high degree of concordance among these metrics in quantifying the extent of EMP. Moreover, each metric, despite being trained on cancer expression profiles, recapitulates the expected changes in EMP scores for non-cancer contexts such as lung fibrosis and cellular reprogramming into induced pluripotent stem cells. Thus, we offer a scoring platform to quantify the extent of EMP in vitro and in vivo for diverse biological applications including cancer.

2021 ◽  
Author(s):  
Susmita Mandal ◽  
Tanishq Tejaswi ◽  
Rohini Janivara ◽  
Syamanthak Srikrishnan ◽  
Pradipti Thakur ◽  
...  

AbstractEpithelial-mesenchymal plasticity (EMP) underlies embryonic development, wound healing, and cancer metastasis and fibrosis. Cancer cells exhibiting EMP often have more aggressive behavior, characterized by drug resistance, and tumor-initiating and immuno-evasive traits. Thus, the EMP status of cancer cells can be a critical indicator of patient prognosis. Here, we compare three distinct transcriptomic-based metrics – each derived using a different gene list and algorithm – that quantify the EMP spectrum. Our results for 96 cancer-related RNA-seq datasets reveal a high degree of concordance among these metrics in quantifying the extent of EMP. Moreover, each metric, despite being trained on cancer expression profiles, recapitulates the expected changes in EMP scores for non-cancer contexts such as lung fibrosis and cellular reprogramming into induced pluripotent stem cells. Thus, we offer a scoring platform to quantify the extent of EMP in vitro and in vivo for diverse biological applications including cancer.


2021 ◽  
Author(s):  
Zi-Jian Deng ◽  
Dong-Wen Chen ◽  
Xi-Jie Chen ◽  
Jia-Ming Fang ◽  
Liang Xv ◽  
...  

Abstract Background: Gastric cancer is the fourth most common malignant disease. Both CDK10 and long noncoding RNAs (lncRNAs) have been found to exert biological functions in multiple cancers. However, it is still unclear whether CDK10 represses tumor progression in gastric cancer by reducing potential targeting lncRNAs.Methods: The functions of CDK10 and lncRNA-C5ORF42-5 in proliferation, invasion and migration were assessed by MTS assays, colony formation assays, cell cycle and apoptosis assays, Transwell assays, wound healing assays and animal experiments. We used high-throughput sequencing to confirm the existence of lncRNA-C5ORF42-5 and quantitative real-time PCR was used to evaluate lncRNA expression. Then, with RNA-seq sequencing as well as GO function and KEGG enrichment analysis, we identified the signaling pathways in which lncRNA-C5ORF42-5 was involved in gastric cancer. Finally, western blotting was used to identify the genes regulated by lncRNA-C5ORF42-5.Results: Our results showed that CDK10 is expressed at relatively low levels in gastric cancer cell lines and inhibits the progression of gastric cancer cells both in vitro and in vivo. Next, based on high-throughput sequencing, we identified a novel lncRNA, lncRNA-C5ORF42-5, in the stable CDK10-overexpressing cell line compared with the CDK-knockdown cell line and their controls. Additionally, we confirmed that lncRNA-C5ORF42-5 acts as an oncogene to promote metastasis in gastric cancer in vitro and in vivo. We then ascertained that lncRNA-C5ORF42-5 is a major contributor to the function of CDK10 in gastric cancer metastasis by upregulating lncRNA-C5ORF42-5 to reverse the effects of CDK10 overexpression. Finally, we explored the mechanism by which lncRNA-C5ORF42-5 overexpression affects gastric cancer cells to elucidate whether lncRNA-C5ORF42-5 may increase the activity of the SMAD pathway of BMP signaling and promote the expression of EMT-related proteins, such as E-cadherin. Additionally, overexpression of lncRNA-C5ORF42-5 affected the phosphorylation levels of AKT and ERK.Conclusion: Our findings suggest that CDK10 overexpression represses gastric cancer tumor progression by reducing lncRNA-C5ORF42-5 and hindering activation of the related proteins in metastatic signaling pathways, which provides new insight into developing effective therapeutic strategies in the treatment of metastatic gastric cancer.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Min Deng ◽  
Xiaodong Cai ◽  
Ling Long ◽  
Linying Xie ◽  
Hongmei Ma ◽  
...  

Abstract Background Accumulating evidence indicates that CD36 initiates metastasis and correlates with an unfavorable prognosis in cancers. However, there are few reports regarding the roles of CD36 in initiation and metastasis of cervical cancer. Methods Using immunohistochemistry, we analyzed 133 cervical cancer samples for CD36 protein expression levels, and then investigated the correlation between changes in its expression and clinicopathologic parameters. The effect of CD36 expression on the epithelial–mesenchymal transition (EMT) in cervical cancer cells was evaluated by Western immunoblotting analysis. In vitro invasion and in vivo metastasis assays were also used to evaluate the role of CD36 in cervical cancer metastasis. Results In the present study, we confirmed that CD36 was highly expressed in cervical cancer samples relative to normal cervical tissues. Moreover, overexpression of CD36 promoted invasiveness and metastasis of cervical cancer cells in vitro and in vivo, while CD36 knockdown suppressed proliferation, migration, and invasiveness. We demonstrated that TGF-β treatment attenuated E-cadherin expression and enhanced the expression levels of CD36, vimentin, slug, snail, and twist in si-SiHa, si-HeLa, and C33a–CD36 cells, suggesting that TGF-β synergized with CD36 on EMT via active CD36 expression. We also observed that the expression levels of TGF-β in si-SiHa cells and si-HeLa cells were down-regulated, whereas the expression levels of TGF-β were up-regulated in C33a–CD36 cells. These results imply that CD36 and TGF-β interact with each other to promote the EMT in cervical cancer. Conclusions Our findings suggest that CD36 is likely to be an effective target for guiding individualized clinical therapy of cervical cancer.


2015 ◽  
Vol 210 (6) ◽  
pp. 1013-1031 ◽  
Author(s):  
Nikki R. Paul ◽  
Jennifer L. Allen ◽  
Anna Chapman ◽  
Maria Morlan-Mairal ◽  
Egor Zindy ◽  
...  

Invasive migration in 3D extracellular matrix (ECM) is crucial to cancer metastasis, yet little is known of the molecular mechanisms that drive reorganization of the cytoskeleton as cancer cells disseminate in vivo. 2D Rac-driven lamellipodial migration is well understood, but how these features apply to 3D migration is not clear. We find that lamellipodia-like protrusions and retrograde actin flow are indeed observed in cells moving in 3D ECM. However, Rab-coupling protein (RCP)-driven endocytic recycling of α5β1 integrin enhances invasive migration of cancer cells into fibronectin-rich 3D ECM, driven by RhoA and filopodial spike-based protrusions, not lamellipodia. Furthermore, we show that actin spike protrusions are Arp2/3-independent. Dynamic actin spike assembly in cells invading in vitro and in vivo is regulated by Formin homology-2 domain containing 3 (FHOD3), which is activated by RhoA/ROCK, establishing a novel mechanism through which the RCP–α5β1 pathway reprograms the actin cytoskeleton to promote invasive migration and local invasion in vivo.


2017 ◽  
Vol 35 (6_suppl) ◽  
pp. e579-e579
Author(s):  
Hélène Cayron ◽  
Alejandro Kayum Jiménez Zenteno ◽  
Aurore Esteve ◽  
Sylvain Sanson ◽  
Christophe Vieu ◽  
...  

e579 Background: Circulating tumor cells (CTCs) are cancer cells that have detached from a tumor and have entered into the blood circulation at a very low concentration (D. Shook, Mech. Dev., Nov 2003). CTCs have a strong prognostic value, as their number has been correlated to overall survival in different metastatic cancers (J. S. de Bono, Clin. Cancer Res., Oct 2008). Considering the rareness of CTCs in blood, capturing them in vitro is very challenging. CTCs being mainly larger and less deformable than most of blood cells, ISET was the first system exploiting their physical traits using a filtration membrane to enrich 10mL blood samples (G. Vona, Am. J. Pathol., Jan 2000). However, placing the trapping system directly within the bloodstream would increase the amount of blood screened and ensure no sampling bias. To our knowledge, the only system developed for in vivo capture of CTCs relies on an immunologic detection targeting CTCs with specific epithelial-cell adhesion molecules (N. Saucedo-Zeni, Int. J. Oncol., Oct 2012). The major drawback of this technique is the selection bias induced, given the strong heterogeneity of antigen expression profiles in CTC population as confirmed by several studies. Methods: Our device combines the advantages of in vivo capture and physical trapping of CTCs. A polymeric 3D net-like microdevice is fabricated using a Direct Laser Writing technique (Nanoscribe) and integrated onto a Nitinol guidewire to be introduced into the basilic vein through a routine 20G catheter. To optimize the design, we conducted simulation studies and in vitro assays using a fluidic platform reproducing in vivo conditions. Results: We succeeded in capturing PC3 human prostate cancer cells from 20 mL healthy donor blood spiked with 1,000 PC3 cells in 2 minutes, demonstrating the capability to capture CTCs in conditions close to those found in vivo, in terms of pressure and flow rate and without any additional treatment or dilution of the blood. Conclusions: This device could facilitate treatment personalization and follow-up. Its versatility should render it transposable to the capture of single or clustered CTCs, derived from all types of cancer and, by extension, to other circulating cellular and molecular biomarkers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jinbing Sun ◽  
Zhihua Lu ◽  
Wei Fu ◽  
Kuangyi Lu ◽  
Xiuwen Gu ◽  
...  

Exosomes derived from cancer cells are deemed important drivers of pre-metastatic niche formation at distant organs, but the underlying mechanisms of their effects remain largely unknow. Although the role of ADAM17 in cancer cells has been well studied, the secreted ADAM17 effects transported via exosomes are less understood. Herein, we show that the level of exosome-derived ADAM17 is elevated in the serum of patients with metastatic colorectal cancer as well as in metastatic colorectal cancer cells. Furthermore, exosomal ADAM17 was shown to promote the migratory ability of colorectal cancer cells by cleaving the E-cadherin junction. Moreover, exosomal ADAM17 overexpression as well as RNA interference results highlighted its function as a tumor metastasis-promoting factor in colorectal cancer in vitro and in vivo. Taken together, our current work suggests that exosomal ADAM17 is involved in pre-metastatic niche formation and may be utilized as a blood-based biomarker of colorectal cancer metastasis.


2020 ◽  
Author(s):  
Priyanka Chakraborty ◽  
Jason T George ◽  
Shubham Tripathi ◽  
Herbert Levine ◽  
Mohit Kumar Jolly

AbstractThe Epithelial-mesenchymal transition (EMT) is a cellular process implicated in embryonic development, wound healing, and pathological conditions such as cancer metastasis and fibrosis. Cancer cells undergoing EMT exhibit enhanced aggressive behavior characterized by drug resistance, tumor-initiation potential, and the ability to evade immune system. Recent in silico, in vitro, and in vivo evidence indicates that EMT is not an all-or-none process; instead, cells stably acquire one or more hybrid epithelial/mesenchymal (E/M) phenotypes which often can be more aggressive than purely epithelial or mesenchymal cell populations. Thus, the EMT status of cancer cells can prove to be a critical estimate of patient prognosis. Recent attempts have employed different transcriptomics signatures to quantify EMT status in cell lines and patient tumors. However, a comprehensive comparison of these methods, including their accuracy in identifying cells in the hybrid E/M phenotype(s), is lacking. Here, we compare three distinct metrics that score EMT on a continuum, based on the transcriptomics signature of individual samples. Our results demonstrate that these methods exhibit good concordance among themselves in quantifying the extent of EMT in a given sample. Moreover, scoring EMT using any of the three methods discerned that cells undergo varying extents of EMT across tumor types. Separately, our analysis also identified tumor types with maximum variability in terms of EMT and associated an enrichment of hybrid E/M signatures in these samples. Moreover, we also found that the multinomial logistic regression (MLR) based metric was capable of distinguishing between ‘pure’ individual hybrid E/M vs. mixtures of epithelial (E) and mesenchymal (M) cells. Our results, thus, suggest that while any of the three methods can indicate a generic trend in the EMT status of a given cell, the MLR method has two additional advantages: a) it uses a small number of predictors to calculate the EMT score, and b) it can predict from the transcriptomic signature of a population whether it is comprised of ‘pure’ hybrid E/M cells at the single-cell level or is instead an ensemble of E and M cell subpopulations.


Author(s):  
Jingjing Zhang ◽  
Yun Li ◽  
Hua Liu ◽  
Jiahui Zhang ◽  
Jie Wang ◽  
...  

Abstract Background The development of lethal cancer metastasis depends on the dynamic interactions between cancer cells and the tumor microenvironment, both of which are embedded in the extracellular matrix (ECM). The acquisition of resistance to detachment-induced apoptosis, also known as anoikis, is a critical step in the metastatic cascade. Thus, a more in-depth and systematic analysis is needed to identify the key drivers of anoikis resistance. Methods Genome-wide CRISPR/Cas9 knockout screen was used to identify critical drivers of anoikis resistance using SKOV3 cell line and found protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) as a candidate. Quantitative real-time PCR (qRT-PCR) and immune-histochemistry (IHC) were used to measure differentially expressed PCMT1 in primary tissues and metastatic cancer tissues. PCMT1 knockdown/knockout and overexpression were performed to investigate the functional role of PCMT1 in vitro and in vivo. The expression and regulation of PCMT1 and integrin-FAK-Src pathway were evaluated using immunoprecipitation followed by mass spectrometry (IP-MS), western blot analysis and live cell imaging. Results We found that PCMT1 enhanced cell migration, adhesion, and spheroid formation in vitro. Interestingly, PCMT1 was released from ovarian cancer cells, and interacted with the ECM protein LAMB3, which binds to integrin and activates FAK-Src signaling to promote cancer progression. Strikingly, treatment with an antibody against extracellular PCMT1 effectively reduced ovarian cancer cell invasion and adhesion. Our in vivo results indicated that overexpression of PCMT1 led to increased ascites formation and distant metastasis, whereas knockout of PCMT1 had the opposite effect. Importantly, PCMT1 was highly expressed in late-stage metastatic tumors compared to early-stage primary tumors. Conclusions Through systematically identifying the drivers of anoikis resistance, we uncovered the contribution of PCMT1 to focal adhesion (FA) dynamics as well as cancer metastasis. Our study suggested that PCMT1 has the potential to be a therapeutic target in metastatic ovarian cancer.


Author(s):  
Mingjiao Weng ◽  
Yukuan Feng ◽  
Yan He ◽  
Weiwei Yang ◽  
Jing Li ◽  
...  

The hypoxic microenvironment is beneficial to the metastasis but not to the proliferation of cancer cells. However, the mechanisms regarding to hypoxia differentially regulating cancer metastasis and proliferation are largely unknown. In this study, we revealed that hypoxia induced the expression of LIN28A at mRNA level but segregated LIN28A mRNAs in the P-bodies and thus inhibits the production of LIN28A protein. This unexpected finding suggests that there may be non-coding role for LIN28A mRNA in the progression of colon cancer. We further showed that the non-coding LIN28A mRNA promotes the metastasis but not proliferation of colon cancer cells in vitro and in vivo. Mechanistically, we revealed that methionyl aminopeptidase 2 (METAP2) is one of the up-regulated metastasis regulators upon over-expression of non-coding LIN28A identified by mass spectrum, and confirmed that it is non-coding LIN28A mRNA instead of LIN28A protein promotes the expression of METAP2. Moreover, we demonstrated that knockdown of DICER abolished the promotional effects of non-coding LIN28A on the metastasis and METAP2 expression. Conclusively, we showed that hypoxia induces the production of LIN28A mRNAs but segregated them into the P-bodies together with miRNAs targeting both LIN28A and METAP2, and then promotes the metastasis by positively regulating the expression of METAP2. This study uncovered a distinctive role of hypoxia in manipulating the metastasis and proliferation by differently regulating the expression of LIN28A at mRNA and protein level.


2020 ◽  
Vol 21 (16) ◽  
pp. 5705 ◽  
Author(s):  
Paula Chlebanowska ◽  
Maciej Sułkowski ◽  
Klaudia Skrzypek ◽  
Anna Tejchman ◽  
Agata Muszyńska ◽  
...  

Neuronal differentiation of human induced pluripotent stem (iPS) cells, both in 2D models and 3D systems in vitro, allows for the study of disease pathomechanisms and the development of novel therapies. To verify if the origin of donor cells used for reprogramming to iPS cells can influence the differentiation abilities of iPS cells, peripheral blood mononuclear cells (PBMC) and keratinocytes were reprogrammed to iPS cells using the Sendai viral vector and were subsequently checked for pluripotency markers and the ability to form teratomas in vivo. Then, iPS cells were differentiated into dopaminergic neurons in 2D and 3D cultures. Both PBMC and keratinocyte-derived iPS cells were similarly reprogrammed to iPS cells, but they displayed differences in gene expression profiles and in teratoma compositions in vivo. During 3D organoid formation, the origin of iPS cells affected the levels of FOXA2 and LMX1A only in the first stages of neural differentiation, whereas in the 2D model, differences were detected at the levels of both early and late neural markers FOXA2, LMX1A, NURR1, TUBB and TH. To conclude, the origin of iPS cells may significantly affect iPS differentiation abilities in teratomas, as well as exerting effects on 2D differentiation into dopaminergic neurons and the early stages of 3D midbrain organoid formation.


Sign in / Sign up

Export Citation Format

Share Document