scholarly journals β-Synuclein: An Enigmatic Protein with Diverse Functionality

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 142
Author(s):  
Junna Hayashi ◽  
John A. Carver

α-Synuclein (αS) is a small, unstructured, presynaptic protein expressed in the brain. Its aggregated form is a major component of Lewy bodies, the large proteinaceous deposits in Parkinson’s disease. The closely related protein, β-Synuclein (βS), is co-expressed with αS. In vitro, βS acts as a molecular chaperone to inhibit αS aggregation. As a result of this assignation, βS has been largely understudied in comparison to αS. However, recent reports suggest that βS promotes neurotoxicity, implying that βS is involved in other cellular pathways with functions independent of αS. Here, we review the current literature pertaining to human βS in order to understand better the role of βS in homeostasis and pathology. Firstly, the structure of βS is discussed. Secondly, the ability of βS to (i) act as a molecular chaperone; (ii) regulate synaptic function, lipid binding, and the nigrostriatal dopaminergic system; (iii) mediate apoptosis; (iv) participate in protein degradation pathways; (v) modulate intracellular metal levels; and (vi) promote cellular toxicity and protein aggregation is explored. Thirdly, the P123H and V70M mutations of βS, which are associated with dementia with Lewy bodies, are discussed. Finally, the importance of post-translational modifications on the structure and function of βS is reviewed. Overall, it is concluded that βS has both synergistic and antagonistic interactions with αS, but it may also possess important cellular functions independent of αS.

2021 ◽  
Vol 22 (7) ◽  
pp. 3700
Author(s):  
Junna Hayashi ◽  
Jennifer Ton ◽  
Sparsh Negi ◽  
Daniel E. K. M. Stephens ◽  
Dean L. Pountney ◽  
...  

Oxidation of the neurotransmitter, dopamine (DA), is a pathological hallmark of Parkinson’s disease (PD). Oxidized DA forms adducts with proteins which can alter their functionality. αB-crystallin and Hsp27 are intracellular, small heat-shock molecular chaperone proteins (sHsps) which form the first line of defense to prevent protein aggregation under conditions of cellular stress. In vitro, the effects of oxidized DA on the structure and function of αB-crystallin and Hsp27 were investigated. Oxidized DA promoted the cross-linking of αB-crystallin and Hsp27 to form well-defined dimer, trimer, tetramer, etc., species, as monitored by SDS-PAGE. Lysine residues were involved in the cross-links. The secondary structure of the sHsps was not altered significantly upon cross-linking with oxidized DA but their oligomeric size was increased. When modified with a molar equivalent of DA, sHsp chaperone functionality was largely retained in preventing both amorphous and amyloid fibrillar aggregation, including fibril formation of mutant (A53T) α-synuclein, a protein whose aggregation is associated with autosomal PD. In the main, higher levels of sHsp modification with DA led to a reduction in chaperone effectiveness. In vivo, DA is sequestered into acidic vesicles to prevent its oxidation and, intracellularly, oxidation is minimized by mM levels of the antioxidant, glutathione. In vitro, acidic pH and glutathione prevented the formation of oxidized DA-induced cross-linking of the sHsps. Oxidized DA-modified αB-crystallin and Hsp27 were not cytotoxic. In a cellular context, retention of significant chaperone functionality by mildly oxidized DA-modified sHsps would contribute to proteostasis by preventing protein aggregation (particularly of α-synuclein) that is associated with PD.


2020 ◽  
Author(s):  
L Caló ◽  
E Hidari ◽  
M Wegrzynowicz ◽  
JW Dalley ◽  
BL Schneider ◽  
...  

AbstractαSynuclein aggregation at the synapse is an early event in Parkinson’s disease and is associated with impaired striatal synaptic function and dopaminergic neuronal death. The cysteine string protein (CSPα) and αsynuclein have partially overlapping roles in maintaining synaptic function and mutations in each cause neurodegenerative diseases. CSPα is a member of the DNAJ/HSP40 family of co-chaperones and like αsynuclein, chaperones the SNARE complex assembly and neurotransmitter release. αSynuclein can rescue neurodegeneration in CSPαKO mice. However, whether αsynuclein aggregation alters CSPα expression and function is unknown. Here we show that αsynuclein aggregation at the synapse induces a decrease in synaptic CSPα and a reduction in the complexes that CSPα forms with HSC70 and STGa. We further show that viral delivery of CSPα rescues in vitro the impaired vesicle recycling in PC12 cells with αsynuclein aggregates and in vivo reduces synaptic αsynuclein aggregates restoring normal dopamine release in 1-120hαsyn mice. These novel findings reveal a mechanism by which αsynuclein aggregation alters CSPα at the synapse, and show that CSPα rescues αsynuclein aggregation-related phenotype in 1-120hαsyn mice similar to the effect of αsynuclein in CSPαKO mice. These results implicate CSPα as a potential therapeutic target for the treatment of early-stage PD.


2020 ◽  
Author(s):  
Charity Mekgwa Lebepe ◽  
Pearl Rutendo Matambanadzo ◽  
Xolani Henry Makhoba ◽  
Ikechukwu Achilonu ◽  
Tawanda Zininga ◽  
...  

ABSTRACTHsp70 is one of the most prominent molecular chaperones. Although Hsp70s from various organisms are generally conserved, they exhibit specialised cellular functions. It remains to be fully understood how these highly conserved molecules exhibit specialised functional features. Plasmodium falciparum Hsp70-1 (PfHsp70-1) is a cytosol localised molecular chaperone that is implicated in the cyto-protection and pathogenicity of the malaria parasite. In the current study, we investigated the comparative structure-function features of PfHsp70-1 relative to its homologue, E. coli Hsp70 (DnaK) and a chimeric protein, KPf, that was constituted by the ATPase domain of DnaK and the substrate binding domain (SBD) of PfHsp70-1. Recombinant forms of all the three Hsp70s exhibited similar secondary and tertiary structural fold. We further established that compared to DnaK, both KPf and PfHsp70-1 were more stable to heat stress and exhibited higher basal ATPase activity. A recombinant P. falciparum Hsp40 (PfHsp40) stimulated the ATPase activities of all the three Hsp70s. In addition, both PfHsp70-1 and KPf exhibited preference for asparagine rich peptides as opposed to DnaK. Furthermore, all the three proteins exhibited self-association capabilities in vitro. Recombinant P. falciparum adenosylmethionine decarboxylase (PfAdoMetDC) co-expressed in E. coli with either KPf or PfHsp70-1 was produced as a fully folded product. On the other hand, co-expression of PfAdoMetDC with heterologous DnaK in E. coli did not promote folding of the former. These findings demonstrated that the SBD of PfHsp70-1 regulates several functional features of the protein and that this molecular chaperone is tailored to facilitate folding of plasmodial proteins.


2020 ◽  
Vol 295 (23) ◽  
pp. 7905-7922 ◽  
Author(s):  
Nadine Ait-Bouziad ◽  
Anass Chiki ◽  
Galina Limorenko ◽  
Shifeng Xiao ◽  
David Eliezer ◽  
...  

The microtubule-associated protein Tau is implicated in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease. Increasing evidence suggests that post-translational modifications play critical roles in regulating Tau's normal functions and its pathogenic properties in tauopathies. Very little is known about how phosphorylation of tyrosine residues influences the structure, aggregation, and microtubule- and lipid-binding properties of Tau. Here, we sought to determine the relative contributions of phosphorylation of one or several of the five tyrosine residues in Tau (Tyr-18, -29, -197, -310, and -394) to the regulation of its biophysical, aggregation, and functional properties. We used a combination of site-specific mutagenesis and in vitro phosphorylation by c-Abl kinase to generate Tau species phosphorylated at all five tyrosine residues, all tyrosine residues except Tyr-310 or Tyr-394 (pTau-Y310F and pTau-Y394F, respectively) and Tau phosphorylated only at Tyr-310 or Tyr-394 (4F/pTyr-310 or 4F/pTyr-394). We observed that phosphorylation of all five tyrosine residues, multiple N-terminal tyrosine residues (Tyr-18, -29, and -197), or specific phosphorylation only at residue Tyr-310 abolishes Tau aggregation and inhibits its microtubule- and lipid-binding properties. NMR experiments indicated that these effects are mediated by a local decrease in β-sheet propensity of Tau's PHF6 domain. Our findings underscore Tyr-310 phosphorylation has a unique role in the regulation of Tau aggregation, microtubule, and lipid interactions. These results also highlight the importance of conducting further studies to elucidate the role of Tyr-310 in the regulation of Tau's normal functions and pathogenic properties.


2015 ◽  
Vol 26 (18) ◽  
pp. 3275-3288 ◽  
Author(s):  
Kate Koles ◽  
Emily M. Messelaar ◽  
Zachary Feiger ◽  
Crystal J. Yu ◽  
C. Andrew Frank ◽  
...  

Membranes form elaborate structures that are highly tailored to their specialized cellular functions, yet the mechanisms by which these structures are shaped remain poorly understood. Here, we show that the conserved membrane-remodeling C-terminal Eps15 Homology Domain (EHD) protein Past1 is required for the normal assembly of the subsynaptic muscle membrane reticulum (SSR) at the Drosophila melanogaster larval neuromuscular junction (NMJ). past1 mutants exhibit altered NMJ morphology, decreased synaptic transmission, reduced glutamate receptor levels, and a deficit in synaptic homeostasis. The membrane-remodeling proteins Amphiphysin and Syndapin colocalize with Past1 in distinct SSR subdomains and collapse into Amphiphysin-dependent membrane nodules in the SSR of past1 mutants. Our results suggest a mechanism by which the coordinated actions of multiple lipid-binding proteins lead to the elaboration of increasing layers of the SSR and uncover new roles for an EHD protein at synapses.


2015 ◽  
Vol 26 (15) ◽  
pp. 2833-2844 ◽  
Author(s):  
Amanda K. Casey ◽  
Shuliang Chen ◽  
Peter Novick ◽  
Susan Ferro-Novick ◽  
Susan R. Wente

The nuclear envelope (NE) and endoplasmic reticulum (ER) are components of the same contiguous membrane system and yet have distinct cellular functions. Mounting evidence suggests roles for some ER proteins in the NE for proper nuclear pore complex (NPC) structure and function. In this study, we identify a NE role in Saccharomyces cerevisiae for Lnp1 and Sey1, proteins required for proper cortical ER formation. Both lnp1Δ and sey1Δ mutants exhibit synthetic genetic interactions with mutants in genes encoding key NPC structural components. Both Lnp1 and Sey1 physically associate with other ER components that have established NPC roles, including Rtn1, Yop1, Pom33, and Per33. Of interest, lnp1Δ rtn1Δ mutants but not rtn1Δ sey1Δ mutants exhibit defects in NPC distribution. Furthermore, the essential NPC assembly factor Ndc1 has altered interactions in the absence of Sey1. Lnp1 dimerizes in vitro via its C-terminal zinc finger motif, a property that is required for proper ER structure but not NPC integrity. These findings suggest that Lnp1's role in NPC integrity is separable from functions in the ER and is linked to Ndc1 and Rtn1 interactions.


2020 ◽  
pp. jlr.TR120000806 ◽  
Author(s):  
Raju V. S. Rajala

The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (PIs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of PI kinases and PI phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule phosphatidylinositol. PI signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane binding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIs in general, in this review, we discuss recent studies and advances in PI lipid signaling in the retina. We specifically focus on PI lipids from vertebrate (e.g. bovine, rat, mice, toad, and zebrafish) and invertebrate (e.g. drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIs revealed from animal models and human diseases, and methods to study PI levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PI-modifying enzymes/phosphatases and further unravel PI regulation and function in the different cell types of the retina.


2016 ◽  
Author(s):  
Yun-Tzai Cloud Lee ◽  
Shang-Te Danny Hsu

AbstractParkinson’s disease (PD) is one of the most common progressive neurodegenerative disorders in modern society. The disease involves many genetic risk factors as well as a sporadic pathogenesis that is age- and environment-dependent. Of particular interest is the formation of intra-neural fibrillar aggregates, namely Lewy bodies (LBs), the histological hallmark of PD, which results from aberrant protein homeostasis or misfolding that results in neurotoxicity. A better understanding of the molecular mechanism and composition of these cellular inclusions will help shed light on the progression of misfolding-associated neurodegenerative disorders. Ubiquitin carbonyl-terminal hydrolase L1 (UCH-L1) is found to co-aggregate with α-synuclein (αS), the major component of LBs. Several familial mutations of UCH-L1, namely p.Ile93Met (p.I93M), p.Glu7Ala (p.E7A), and p.Ser18Tyr (p.S18Y), are associated with PD and other neurodegenerative disorders. Here, we review recent progress and recapitulate the impact of PD-associated mutations of UCH-L1 in the context of their biological functions gleaned from biochemical and biophysical studies. Finally, we summarize the effect of these genetic mutations and post-translational modifications on the association of UCH-L1 and PD in terms of loss of cellular functions or gain of cellular toxicity.


2015 ◽  
Author(s):  
Kyle E Watters ◽  
Angela M Yu ◽  
Eric J Strobel ◽  
Alex H Settle ◽  
Julius Lucks

RNA molecules adopt a wide variety of structures that perform many cellular functions, including catalysis, small molecule sensing, and cellular defense, among others. Our ability to characterize, predict, and design RNA structures are key factors for understanding and controlling the biological roles of RNAs. Fortunately, there has been rapid progress in this area, especially with respect to experimental methods that can characterize RNA structures in a high throughput fashion using chemical probing and next-generation sequencing. Here, we describe one such method, selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq), which measures nucleotide resolution flexibility information for RNAs in vitro and in vivo. We outline the process of designing and performing a SHAPE-Seq experiment and describe methods for using experimental SHAPE-Seq data to restrain computational folding algorithms to generate more accurate predictions of RNA secondary structure. We also provide a number of examples of SHAPE-Seq reactivity spectra obtained in vitro and in vivo and discuss important considerations for performing SHAPE-Seq experiments, both in terms of collecting and analyzing data. Finally we discuss improvements and extensions of these experimental and computational techniques that promise to deepen our knowledge of RNA folding and function.


2020 ◽  
Vol 16 (10) ◽  
pp. e1008784
Author(s):  
Rebecca J. Burge ◽  
Andreas Damianou ◽  
Anthony J. Wilkinson ◽  
Boris Rodenko ◽  
Jeremy C. Mottram

Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. 2 E1 ubiquitin-activating (E1), 13 E2 ubiquitin-conjugating (E2), 79 E3 ubiquitin ligase (E3) and 20 deubiquitinating cysteine peptidase (DUB) genes can be identified in the Leishmania mexicana genome but, currently, little is known about the role of E1, E2 and E3 enzymes in this parasite. Bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed numerous loss-of-fitness phenotypes in promastigote to amastigote differentiation and mammalian infection. The E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for the successful transformation from promastigote to amastigote and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Of all ubiquitination enzyme null mutants examined in the screen, Δubc2 and Δuev1 exhibited the most extreme loss-of-fitness during differentiation. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, reveal a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a can load ubiquitin onto UBC2, allowing UBC2-UEV1 to form K63-linked di-ubiquitin chains in vitro. Notably, UBC2 can cooperate in vitro with human E3s RNF8 and BIRC2 to form non-K63-linked polyubiquitin chains, showing that UBC2 can facilitate ubiquitination independent of UEV1, but association of UBC2 with UEV1 inhibits this ability. Our study demonstrates the dual essentiality of UBC2 and UEV1 in the differentiation and intracellular survival of L. mexicana and shows that the interaction between these two proteins is crucial for regulation of their ubiquitination activity and function.


Sign in / Sign up

Export Citation Format

Share Document