scholarly journals A Novel Splice Variant of the Masculinizing Gene Masc with piRNA-Cleavage-Site Defect Functions in Female External Genital Development in the Silkworm, Bombyx mori

Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 318 ◽  
Author(s):  
Qin Zhao ◽  
Juan Li ◽  
Mao-Yu Wen ◽  
He Wang ◽  
Yao Wang ◽  
...  

In the silkworm, the sex-determination primary signal Fem controls sex differentiation by specific binding of Fem-derived piRNA to the cleavage site in Masc mRNA, thus inhibiting Masc protein production in the female. In this study, we identified a novel splicing isoform of Masc, named Masc-S, which lacks the intact sequence of the cleavage site, encoding a C-terminal truncated protein. Results of RT-PCR showed that Masc-S was expressed in both sexes. Over-expression of Masc-S and Masc in female-specific cell lines showed that Masc-S could be translated against the Fem-piRNA cut. By RNA-protein pull-down, LC/MS/MS, and EMSA, we identified a protein BmEXU that specifically binds to an exclusive RNA sequence in Masc compared to Masc-S. Knockdown of Masc-S resulted in abnormal morphology in female external genital and increased expression of the Hox gene Abd-B, which similarly occurred by Bmexu RNAi. These results suggest that the splice variant Masc-S against Fem-piRNA plays an important role in female external genital development, of which function is opposite to that of full-length Masc. Our study provides new insights into the regulatory mechanism of sex determination in the silkworm.

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 315
Author(s):  
Xu Yang ◽  
Kai Chen ◽  
Yaohui Wang ◽  
Dehong Yang ◽  
Yongping Huang

In insects, sex determination pathways involve three levels of master regulators: primary signals, which determine the sex; executors, which control sex-specific differentiation of tissues and organs; and transducers, which link the primary signals to the executors. The primary signals differ widely among insect species. In Diptera alone, several unrelated primary sex determiners have been identified. However, the doublesex (dsx) gene is highly conserved as the executor component across multiple insect orders. The transducer level shows an intermediate level of conservation. In many, but not all examined insects, a key transducer role is performed by transformer (tra), which controls sex-specific splicing of dsx. In Lepidoptera, studies of sex determination have focused on the lepidopteran model species Bombyx mori (the silkworm). In B. mori, the primary signal of sex determination cascade starts from Fem, a female-specific PIWI-interacting RNA, and its targeting gene Masc, which is apparently specific to and conserved among Lepidoptera. Tra has not been found in Lepidoptera. Instead, the B. mori PSI protein binds directly to dsx pre-mRNA and regulates its alternative splicing to produce male- and female-specific transcripts. Despite this basic understanding of the molecular mechanisms underlying sex determination, the links among the primary signals, transducers and executors remain largely unknown in Lepidoptera. In this review, we focus on the latest findings regarding the functions and working mechanisms of genes involved in feminization and masculinization in Lepidoptera and discuss directions for future research of sex determination in the silkworm.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhouping Cui ◽  
Jian Zhang ◽  
Zhihui Sun ◽  
Bingzheng Liu ◽  
Chong Zhao ◽  
...  

Sex-specific markers play an important role in revealing sex-determination mechanism. Sea urchin (Mesocentrotus nudus) is an economically important mariculture species in several Asian countries and its gonads are the sole edible parts for people. However, growth rate and immunocompetence differ by sex in this species, sex-specific markers have not been identified, and the sex-determination mechanism of sea urchin remains undetermined. In this study, type IIB endonuclease restriction-site associated DNA sequencing (2b-RAD-seq) and a genome survey of M. nudus were performed, and three female-specific markers and three female heterogametic single nucleotide polymorphism (SNP) loci were identified. We validated these sex-specific markers via PCR amplification in a large number of individuals, including wild and artificially bred populations. Several open reading frames (ORFs) were predicted, although there are no potential genes known for sex determination and sex differentiation within the scaffold in which the sex-specific markers are located. Importantly, the female-specific sequences and female heterozygous SNP loci indicate that a female heterogametic and male homogametic ZW/ZZ sex-determination system should exist in M. nudus. The results provide a solid basis for revealing the sex-determination mechanism of this species, and open up new possibilities for developing sex-control breeding in sea urchin.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Abyt Ibraimov

In many animals, including us, the genetic sex is determined at fertilization by sex chromosomes. Seemingly, the sex determination (SD) in human and animals is determined by the amount of constitutive heterochromatin on Y chromosome via cell thermoregulation. It is assumed the medulla and cortex tissue cells in the undifferentiated embryonic gonads (UEG) differ in vulnerability to the increase of the intracellular temperature. If the amount of the Y chromosome constitutive heterochromatin is enough for efficient elimination of heat difference between the nucleus and cytoplasm in rapidly growing UEG cells the medulla tissue survives. Otherwise it doomed to degeneration and a cortex tissue will remain in the UEG. Regardless of whether our assumption is true or not, it remains an open question why on Y chromosome there is a large constitutive heterochromatin block? What is its biological meaning? Does it relate to sex determination, sex differentiation and development of secondary sexual characteristics? If so, what is its mechanism: chemical or physical? There is no scientifically sound answer to these questions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongwei Yan ◽  
Qi Liu ◽  
Jieming Jiang ◽  
Xufang Shen ◽  
Lei Zhang ◽  
...  

AbstractAlthough sex determination and differentiation are key developmental processes in animals, the involvement of non-coding RNA in the regulation of this process is still not clarified. The tiger pufferfish (Takifugu rubripes) is one of the most economically important marine cultured species in Asia, but analyses of miRNA and long non-coding RNA (lncRNA) at early sex differentiation stages have not been conducted yet. In our study, high-throughput sequencing technology was used to sequence transcriptome libraries from undifferentiated gonads of T. rubripes. In total, 231 (107 conserved, and 124 novel) miRNAs were obtained, while 2774 (523 conserved, and 2251 novel) lncRNAs were identified. Of these, several miRNAs and lncRNAs were predicted to be the regulators of the expression of sex-related genes (including fru-miR-15b/foxl2, novel-167, novel-318, and novel-538/dmrt1, novel-548/amh, lnc_000338, lnc_000690, lnc_000370, XLOC_021951, and XR_965485.1/gsdf). Analysis of differentially expressed miRNAs and lncRNAs showed that three mature miRNAs up-regulated and five mature miRNAs were down-regulated in male gonads compared to female gonads, while 79 lncRNAs were up-regulated and 51 were down-regulated. These findings could highlight a group of interesting miRNAs and lncRNAs for future studies and may reveal new insights into the function of miRNAs and lncRNAs in sex determination and differentiation.


Development ◽  
1997 ◽  
Vol 124 (24) ◽  
pp. 5033-5048 ◽  
Author(s):  
J.H. Hager ◽  
T.W. Cline

With a focus on Sex-lethal (Sxl), the master regulator of Drosophila somatic sex determination, we compare the sex determination mechanism that operates in the germline with that in the soma. In both cell types, Sxl is functional in females (2X2A) and nonfunctional in males (1X2A). Somatic cell sex is determined initially by a dose effect of X:A numerator genes on Sxl transcription. Once initiated, the active state of SXL is maintained by a positive autoregulatory feedback loop in which Sxl protein insures its continued synthesis by binding to Sxl pre-mRNA and thereby imposing the productive (female) splicing mode. The gene splicing-necessary factor (snf), which encodes a component of U1 and U2 snRNPs, participates in this RNA splicing control. Here we show that an increase in the dose of snf+ can trigger the female Sxl RNA splicing mode in male germ cells and can feminize triploid intersex (2X3A) germ cells. These snf+ dose effects are as dramatic as those of X:A numerator genes on Sxl in the soma and qualify snf as a numerator element of the X:A signal for Sxl in the germline. We also show that female-specific regulation of Sxl in the germline involves a positive autoregulatory feedback loop on RNA splicing, as it does in the soma. Neither a phenotypically female gonadal soma nor a female dose of X chromosomes in the germline is essential for the operation of this feedback loop, although a female X-chromosome dose in the germline may facilitate it. Engagement of the Sxl splicing feedback loop in somatic cells invariably imposes female development. In contrast, engagement of the Sxl feedback loop in male germ cells does not invariably disrupt spermatogenesis; nevertheless, it is premature to conclude that Sxl is not a switch gene in germ cells for at least some sex-specific aspects of their differentiation. Ironically, the testis may be an excellent organ in which to study the interactions among regulatory genes such as Sxl, snf, ovo and otu which control female-specific processes in the ovary.


2021 ◽  
Vol 376 (1832) ◽  
pp. 20200089
Author(s):  
Heiner Kuhl ◽  
Yann Guiguen ◽  
Christin Höhne ◽  
Eva Kreuz ◽  
Kang Du ◽  
...  

Several hypotheses explain the prevalence of undifferentiated sex chromosomes in poikilothermic vertebrates. Turnovers change the master sex determination gene, the sex chromosome or the sex determination system (e.g. XY to WZ). Jumping master genes stay main triggers but translocate to other chromosomes. Occasional recombination (e.g. in sex-reversed females) prevents sex chromosome degeneration. Recent research has uncovered conserved heteromorphic or even homomorphic sex chromosomes in several clades of non-avian and non-mammalian vertebrates. Sex determination in sturgeons (Acipenseridae) has been a long-standing basic biological question, linked to economical demands by the caviar-producing aquaculture. Here, we report the discovery of a sex-specific sequence from sterlet ( Acipenser ruthenus ). Using chromosome-scale assemblies and pool-sequencing, we first identified an approximately 16 kb female-specific region. We developed a PCR-genotyping test, yielding female-specific products in six species, spanning the entire phylogeny with the most divergent extant lineages ( A. sturio, A. oxyrinchus versus A. ruthenus, Huso huso ), stemming from an ancient tetraploidization. Similar results were obtained in two octoploid species ( A. gueldenstaedtii, A. baerii ). Conservation of a female-specific sequence for a long period, representing 180 Myr of sturgeon evolution, and across at least one polyploidization event, raises many interesting biological questions. We discuss a conserved undifferentiated sex chromosome system with a ZZ/ZW-mode of sex determination and potential alternatives. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.


2017 ◽  
Author(s):  
Diane Maitre ◽  
Oliver M. Selmoni ◽  
Anshu Uppal ◽  
Lucas Marques da Cunha ◽  
Laetitia G. E. Wilkins ◽  
...  

AbstractFish can be threatened by distorted sex ratios that arise during sex differentiation. It is therefore important to understand sex determination and differentiation, especially in river-dwelling fish that are often exposed to environmental factors that may interfere with sex differentiation. However, sex differentiation is not sufficiently understood in keystone taxa such as the Thymallinae, one of the three salmonid subfamilies. Here we study a wild grayling (Thymallus thymallus) population that suffers from distorted sex ratios. We found sex determination in the wild and in captivity to be genetic and linked to the sdY locus. We therefore studied sex-specific gene expression in embryos and early larvae that were bred and raised under different experimental conditions, and we studied gonadal morphology in five monthly samples taken after hatching. Significant sex-specific changes in gene expression (affecting about 25,000 genes) started around hatching. Gonads were still undifferentiated three weeks after hatching, but about half of the fish showed immature testes around seven weeks after hatching. Over the next few months, this phenotype was mostly replaced by the “testis-to-ovary” or “ovaries” phenotypes. The gonads of the remaining fish, i.e. approximately half of the fish in each sampling period, remained undifferentiated until six months after fertilization. Genetic sexing of the last two samples revealed that fish with undifferentiated gonads were all males, who, by that time, were on average larger than the genetic females (verified in 8-months old juveniles raised in another experiment). Only 12% of the genetic males showed testicular tissue six months after fertilization. We conclude that sex differentiation starts around hatching, goes through an all-male stage for both sexes (which represents a rare case of “undifferentiated” gonochoristic species that usually go through an all-female stage), and is delayed in males who, instead of developing their gonads, grow faster than females during these juvenile stages.Author contributionMRR and CW initiated the project. DM, OS, AU, LMC, LW, and CW sampled the adult fish, did the experimental in vitro fertilizations, and prepared the embryos for experimental rearing in the laboratory. All further manipulations on the embryos and the larvae were done by DM, OS, AU, LMC, and LW. The RNA-seq data were analyzed by OS, JR, and MRR, the histological analyses were done by DM, supervised by SK, and the molecular genetic sexing was performed by DM, OS, AU, and KBM. DM, OS, and CW performed the remaining statistical analyses and wrote the first version of the manuscript that was then critically revised by all other authors.


2015 ◽  
Vol 08 (01) ◽  
pp. 1530003 ◽  
Author(s):  
Hong Deng ◽  
Jie Xie ◽  
Jingquan Zhao

Photodynamic therapy (PDT) has been a routine treatment of tumors and some microvascular diseases, but clinically available photosensitizers are still scarce. Among all kinds of photosensitizers, hypocrellins possess the most characteristics of ideal photosensitizers, such as, high photo-activity but low dark toxicity, fast clearance from tissues. This review is focused on two main topics, drug-delivery problem of hypocrellins and how the environment-sensitive fluorescence of hypocrellins was used for recognition of various biomolecules. Drug-delivery of hypocrellins was mainly achieved in two strategies — preparing the drug-delivery vehicles and finding quantitatively amphiphilic derivatives. Hypocrellin fluorescence originated from the intramolecular proton transfer is very distinct from other kinds of photosensitizers. Recently, it was proved that quantitative hypocrellin fluorescence could not only recognize various biomolecules, including proteins, polysaccharides and lipids, but also distinguish the specific binding from nonspecific binding with some kind of biomolecules. Meantime, hypocrellin fluorescence was pH-sensitive. It is known that tumor cells or tissues have the features of a large amount of lipid, neonatal collagen, over-expression of polysaccharides, and lower pH values compared to normal tissues. According to the relative but not absolute specificity, further studies on quantitative recognition of various biomolecules at a cellular level, may find a new clue to treat tumors by joint usage of photodynamic diagnosis (PDD) and PDT.


2004 ◽  
Vol 20 (1) ◽  
pp. 12-14 ◽  
Author(s):  
Kristen P. Parks ◽  
Heather Seidle ◽  
Nathan Wright ◽  
Jeffrey B. Sperry ◽  
Pawel Bieganowski ◽  
...  

Hint is a universally conserved, dimeric AMP-lysine hydrolase encoded on the avian Z chromosome. Tandemly repeated on the female-specific W chromosome, Asw encodes a potentially sex-determining, dominant-negative Hint dimerization partner whose substrate-interacting residues were specifically altered in evolution. To test the hypothesis that Gln127 of Asw is responsible for depression and/or alteration of Hint enzyme activity, a corresponding mutant was created in the chicken Hint homodimer, and a novel substrate was developed that links reversal of AMP-lysine modification to aminomethylcoumarin release. Strikingly, the Hint-W123Q substitution reduced kcat/ Km for AMP-lysine hydrolysis 17-fold, while it increased specificity for AMP- para-nitroaniline hydrolysis by 160-fold. The resulting 2,700-fold switch in enzyme specificity suggests that Gln127 could be the dominant component of Asw dominant negativity in avian feminization.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 202 ◽  
Author(s):  
Qian Bai ◽  
Chenyi Zhu ◽  
Xia Lei ◽  
Tao Cao ◽  
Shuchai Su ◽  
...  

Pistacia chinensis Bunge is widely acknowledged to be dioecious, but rare monoecious individuals have been found. However, the origin of monoecism and the sex differentiation of different sex types remain intriguing questions. Here, sex expressions were explored by identification of sex-associated DNA markers, determination of the sex stability after grafting, and histological characterization of inflorescence bud development using anatomical analysis. The results showed that (1) although polymorphisms among individuals existed, the banding patterns of Polymerase Chain Reaction (PCR) products for different sex types on the same monoecious tree were consistent; (2) the sex expressions of grafted trees were not consistent with those of scions, indicating that monoecism probably did not originate from a stable bud mutation; and (3) both males and females underwent a bisexual period, then the stamen primordia in female buds degenerated into the second round tepals, while the pistil primordia in male buds gradually disappeared. During the sex differentiation phase, female buds were spindle-shaped, while the male buds were full teardrop-shaped, and male buds were bigger than female buds. Taken together, no sex-associated DNA marker was found, sex expressions were unstable after grafting, and the alternative sex organs appeared in the early stage of sex differentiation, suggesting that sex determination occurred during floral development instead of the early vegetative period. These results indicated that the sex expressions may be affected by environmental factors, increasing the understanding of sex determination mechanisms in P. chinensis and other species.


Sign in / Sign up

Export Citation Format

Share Document