scholarly journals Impact of Sarcopenia and Myosteatosis in Non-Cirrhotic Stages of Liver Diseases: Similarities and Differences across Aetiologies and Possible Therapeutic Strategies

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 182
Author(s):  
Annalisa Cespiati ◽  
Marica Meroni ◽  
Rosa Lombardi ◽  
Giovanna Oberti ◽  
Paola Dongiovanni ◽  
...  

Sarcopenia is defined as a loss of muscle strength, mass and function and it is a predictor of mortality. Sarcopenia is not only a geriatric disease, but it is related to several chronic conditions, including liver diseases in both its early and advanced stages. Despite the increasing number of studies exploring the role of sarcopenia in the early stages of chronic liver disease (CLD), its prevalence and the relationship between these two clinical entities are still controversial. Myosteatosis is characterized by fat accumulation in the muscles and it is related to advanced liver disease, although its role in the early stages is still under researched. Therefore, in this narrative review, we firstly aimed to evaluate the prevalence and the pathogenetic mechanisms underlying sarcopenia and myosteatosis in the early stage of CLD across different aetiologies (mainly non-alcoholic fatty liver disease, alcohol-related liver disease and viral hepatitis). Secondly, due to the increasing prevalence of sarcopenia worldwide, we aimed to revise the current and the future therapeutic approaches for the management of sarcopenia in CLD.

2021 ◽  
Vol 14 ◽  
pp. 175628482110313
Author(s):  
Paul Middleton ◽  
Nikhil Vergis

Mitochondria are key organelles involved in energy production as well as numerous metabolic processes. There is a growing interest in the role of mitochondrial dysfunction in the pathogenesis of common chronic diseases as well as in cancer development. This review will examine the role mitochondria play in the pathophysiology of common liver diseases, including alcohol-related liver disease, non-alcoholic fatty liver disease, chronic hepatitis B and hepatocellular carcinoma. Mitochondrial dysfunction is described widely in the literature in studies examining patient tissue and in disease models. Despite significant differences in pathophysiology between chronic liver diseases, common mitochondrial defects are described, including increased mitochondrial reactive oxygen species production and impaired oxidative phosphorylation. We review the current literature on mitochondrial-targeted therapies, which have the potential to open new therapeutic avenues in the management of patients with chronic liver disease.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Benedetta M. Motta ◽  
Christoph Grander ◽  
Martin Gögele ◽  
Luisa Foco ◽  
Vladimir Vukovic ◽  
...  

Abstract Background Non-alcoholic fatty liver disease (NAFLD) is characterized by triglyceride accumulation in the hepatocytes in the absence of alcohol overconsumption, commonly associated with insulin resistance and obesity. Both NAFLD and type 2 diabetes (T2D) are characterized by an altered microbiota composition, however the role of the microbiota in NAFLD and T2D is not well understood. To assess the relationship between alteration in the microbiota and NAFLD while dissecting the role of T2D, we established a nested study on T2D and non-T2D individuals within the Cooperative Health Research In South Tyrol (CHRIS) study, called the CHRIS-NAFLD study. Here, we present the study protocol along with baseline and follow-up characteristics of study participants. Methods Among the first 4979 CHRIS study participants, 227 individuals with T2D were identified and recalled, along with 227 age- and sex-matched non-T2D individuals. Participants underwent ultrasound and transient elastography examination to evaluate the presence of hepatic steatosis and liver stiffness. Additionally, sampling of saliva and faeces, biochemical measurements and clinical interviews were carried out. Results We recruited 173 T2D and 183 non-T2D participants (78% overall response rate). Hepatic steatosis was more common in T2D (63.7%) than non-T2D (36.3%) participants. T2D participants also had higher levels of liver stiffness (median 4.8 kPa, interquartile range (IQR) 3.7, 5.9) than non-T2D participants (median 3.9 kPa, IQR 3.3, 5.1). The non-invasive scoring systems like the NAFLD fibrosis score (NFS) suggests an increased liver fibrosis in T2D (mean − 0.55, standard deviation, SD, 1.30) than non-T2D participants (mean − 1.30, SD, 1.17). Discussion Given the comprehensive biochemical and clinical characterization of study participants, once the bioinformatics classification of the microbiota will be completed, the CHRIS-NAFLD study will become a useful resource to further our understanding of the relationship between microbiota, T2D and NAFLD.


BMJ Open ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. e039804
Author(s):  
Chen Huanan ◽  
Li Sangsang ◽  
Adwoa Nyantakyiwaa Amoah ◽  
Bo Yacong ◽  
Chen Xuejiao ◽  
...  

ObjectiveNon-alcoholic fatty liver disease (NAFLD) is one of the major causes of liver-related diseases but relationship between triglyceride glucose (TyG) and NAFLD in the elderly is not reported yet. In this study, we investigated the role of TyG index for predicting the incidence of NAFLD in the elderly.Design and settingThis is a prospective cohort study in Henan, China, from 2011 to 2018.Participants and methodsIn total, 46 693 elderly who participated in a routine physical examination programme from 2011 to 2018 were included in this study. TyG index was calculated as ln (fasting triglyceride (mg/dL)×fasting plasma glucose (mg/dL)/2), while NAFLD was defined as hepatic steatosis after excluding other causes based on the results of abdominal ultrasonography; Cox regression model was performed to explore the relationship between TyG index and NAFLD. Also, mediation effect was used to analyse the role of the TyG index in WHtR (waist-to-height ratio) and NAFLD.ResultsDuring the 149 041 person-years follow-up, a total of 5660 NAFLD events occurred (3.80/100 person-years). After adjusting for potential confounding factors, quartiles 4 of TyG index significantly increased the incidence of NAFLD compared with quartile 1, the HRs and 95% CI were 1.314 (1.234 to 1.457). In addition, TyG index played a partial mediating role in the relationship between WHtR and NAFLD and indirect effect was 1.009 (1.006 to 1.011).ConclusionHigher TyG index was associated with higher risk of NAFLD in the aged, and therefore, TyG index may be a novel predictor for incidence of NAFLD. Further, regular examination and evaluation of the TyG index might be useful for controlling the occurrence of NAFLD.


Author(s):  
Aaliya L. Ali ◽  
Namrata P. Nailwal ◽  
Gaurav M. Doshi

Background: The most common liver diseases are fibrosis, alcoholic liver disease, non-alcoholic fatty disease, viral hepatitis, and hepatocellular carcinoma. These liver diseases account for approximately 2 million deaths per year worldwide, with cirrhosis accounting for 2.1% of the worldwide burden. The most widely used liver function tests for diagnosis are alanine transaminase, aspartate transaminase, serum proteins, serum albumin, and serum globulins, whereas antivirals and corticosteroids have been proven to be useful for the treatment of liver diseases. A major disadvantage of these diagnostic measures is the lack of specificity to a particular tissue or cell type, as these enzymes are common to one or more tissues. The major adverse effect of current treatment methods is drug resistance. To overcome these issues, interleukins have been investigated. The balance of these interleukins determines the outcome of an immune response. Interleukins are considered interesting therapeutic targets for the treatment of liver diseases. In this review, we summarize the current state of knowledge regarding interleukins in the diagnosis, treatment, and pathogenesis of different acute and chronic liver diseases. Objective: To understand the role of interleukins in the assessment and treatment of different types of liver diseases. Methods: A literature search was conducted using PubMed, Science Direct, and NCBI with the following keywords: Interleukins, Acute Liver Failure, Alcoholic Liver Disease, Non-Alcoholic Fatty Liver Disease, Liver Fibrosis, Hepatocellular Carcinoma, Inflammation, Liver injury, Hepatoprotective effect. Clinical trial data on these interleukins have been searched on Clinicaltrials.gov. Results: Existing literature and preclinical and clinical trial data demonstrate that interleukins play a crucial role in the pathogenesis of liver diseases. Conclusion: Our findings indicate that IL-1, IL-6, IL-10, IL-17, IL-22, IL-35, and IL-37 are involved in the progression and control of various liver conditions via the regulation of cell signaling pathways. However, further investigation on the involvement of these interleukins is necessary for their use as a targeted therapy in liver diseases.


2017 ◽  
Vol 242 (16) ◽  
pp. 1605-1616 ◽  
Author(s):  
Alejandro Soto-Gutierrez ◽  
Albert Gough ◽  
Lawrence A Vernetti ◽  
DL Taylor ◽  
Satdarshan P Monga

The establishment of metabolic zonation within a hepatic lobule ascribes specific functions to hepatocytes based on unique, location-dependent gene expression patterns. Recently, there have been significant developments in the field of metabolic liver zonation. A little over a decade ago, the role of β-catenin signaling was identified as a key regulator of gene expression and function in pericentral hepatocytes. Since then, additional molecules have been identified that regulate the pattern of Wnt/β-catenin signaling within a lobule and determine gene expression and function in other hepatic zones. Currently, the molecular basis of metabolic zonation in the liver appears to be a ‘push and pull’ between signaling pathways. Such compartmentalization not only provides an efficient assembly line for hepatocyte functions but also can account for restricting the initial hepatic damage and pathology from some hepatotoxic drugs to specific zones, possibly enabling effective regeneration and restitution responses from unaffected cells. Careful analysis and experimentation have also revealed that many pathological conditions in the liver lobule are spatially heterogeneous. We will review current research efforts that have focused on examination of the role and regulation of such mechanisms of hepatocyte adaptation and repair. We will discuss how the pathological organ-specific microenvironment affects cell signaling and metabolic liver zonation, especially in steatosis, viral hepatitis, and hepatocellular carcinoma. We will discuss how the use of new human microphysiological platforms will lead to a better understanding of liver disease progression, diagnosis, and therapies. In conclusion, we aim to provide insights into the role and regulation of metabolic zonation and function using traditional and innovative approaches. Impact statement Liver zonation of oxygen tension along the liver sinusoids has been identified as a critical liver microenvironment that impacts specific liver functions such as intermediary metabolism of amino acids, lipids, and carbohydrates, detoxification of xenobiotics and as sites for initiation of liver diseases. To date, most information on the role of zonation in liver disease including, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC) have been obtained from animal models. It is now possible to complement animal studies with human liver, microphysiology systems (MPS) containing induced pluripotent stem cells engineered to create disease models where it is also possible to control the in vitro liver oxygen microenvironment to define the role of zonation on the mechanism(s) of disease progression. The field now has the tools to investigate human liver disease progression, diagnosis, and therapeutic development.


2021 ◽  
Vol 14 (10) ◽  
pp. 995
Author(s):  
Paola Orlandi ◽  
Anna Solini ◽  
Marta Banchi ◽  
Maurizia Rossana Brunetto ◽  
Dania Cioni ◽  
...  

Non-alcoholic fatty liver disease is the most common liver disorder worldwide, and its progressive form non-alcoholic steatohepatitis (NASH) is a growing cause of liver cirrhosis and hepatocellular carcinoma (HCC). Lifestyle changes, which are capable of improving the prognosis, are hard to achieve, whereas a pharmacologic therapy able to combine efficacy and safety is still lacking. Looking at the pathophysiology of various liver diseases, such as NASH, fibrosis, cirrhosis, and HCC, the process of angiogenesis is a key mechanism influencing the disease progression. The relationship between the worsening of chronic liver disease and angiogenesis may suggest a possible use of drugs with antiangiogenic activity as a tool to stop or slow the progression of the disorder. In this review, we highlight the available preclinical data supporting a role of known antiangiogenic drugs (e.g., sorafenib), or phytotherapeutic compounds with multiple mechanism of actions, including also antiangiogenic activities (e.g., berberine), in the treatment of NASH.


2019 ◽  
Vol 17 (11) ◽  
pp. 2320-2329.e12 ◽  
Author(s):  
Neil D. Shah ◽  
Meritxell Ventura-Cots ◽  
Juan G. Abraldes ◽  
Mohamed Alboraie ◽  
Ahmad Alfadhli ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Junda Liu ◽  
Xiong-Wen Lv ◽  
Lei Zhang ◽  
Hua Wang ◽  
Jun Li ◽  
...  

The liver accounts for the largest proportion of macrophages in all solid organs of the human body. Liver macrophages are mainly composed of cytolytic cells inherent in the liver and mononuclear macrophages recruited from the blood. Monocytes recruitment occurs mainly in the context of liver injury and inflammation and can be recruited into the liver and achieve a KC-like phenotype. During the immune response of the liver, macrophages/KC cells release inflammatory cytokines and infiltrate into the liver, which are considered to be the common mechanism of various liver diseases in the early stage. Meanwhile, macrophages/KC cells form an interaction network with other liver cells, which can affect the occurrence and progression of liver diseases. From the perspective of liver disease treatment, knowing the full spectrum of macrophage activation, the underlying molecular mechanisms, and their implication in either promoting liver disease progression or repairing injured liver tissue is highly relevant from a therapeutic point of view. Kv1.3 is a subtype of the voltage-dependent potassium channel, whose function is closely related to the regulation of immune cell function. At present, there are few studies on the relationship between Kv1.3 and liver diseases, and the application of its blockers as a potential treatment for liver diseases has not been reported. This manuscript reviewed the physiological characteristics of Kv1.3, the relationship between Kv1.3 and cell proliferation and apoptosis, and the role of Kv1.3 in a variety of liver diseases, so as to provide new ideas and strategies for the prevention and treatment of liver diseases. In short, by understanding the role of Kv1.3 in regulating the functions of immune cells such as macrophages, selective blockers of Kv1.3 or compounds with similar functions can be applied to alleviate the progression of liver diseases and provide new ideas for the prevention and treatment of liver diseases.


Physiology ◽  
2020 ◽  
Vol 35 (4) ◽  
pp. 261-274 ◽  
Author(s):  
Lu Jiang ◽  
Bernd Schnabl

The gut and the liver have a bidirectional communication via the biliary system and the portal vein. The intestinal microbiota and microbial products play an important role for modulating liver diseases such as alcohol-associated liver disease, non-alcoholic fatty liver disease and steatohepatitis, and cholestatic liver diseases. Here, we review the role of the gut microbiota and its products for the pathogenesis and therapy of chronic liver diseases.


Sign in / Sign up

Export Citation Format

Share Document