scholarly journals Fine Tuning of Cholinesterase and Glutathione-S-Transferase Activities by Organoruthenium(II) Complexes

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1243
Author(s):  
Tomaž Trobec ◽  
Kristina Sepčić ◽  
Monika Cecilija Žužek ◽  
Jerneja Kladnik ◽  
Nina Podjed ◽  
...  

Cholinesterases (ChEs) show increased activities in patients with Alzheimer’s disease, and remain one of the main therapeutic targets for treatment of this neurodegenerative disorder. A library of organoruthenium(II) complexes was prepared to investigate the influence of their structural elements on inhibition of ChEs, and on another pharmacologically important group of enzymes, glutathione S-transferases (GSTs). Two groups of organoruthenium(II) compounds were considered: (i) organoruthenium(II) complexes with p-cymene as an arene ligand, and (ii) organoruthenium(II) carbonyl complexes as CO-releasing molecules. Eight organoruthenium complexes were screened for inhibitory activities against ChEs and GSTs of human and animal origins. Some compounds inhibited all of these enzymes at low micromolar concentrations, while others selectively inhibited either ChEs or GSTs. This study demonstrates the importance of the different structural elements of organoruthenium complexes for their inhibitory activities against ChEs and GSTs, and also proposes some interesting compounds for further preclinical testing as ChE or GST inhibitory drugs.

2021 ◽  
Vol 11 (7) ◽  
pp. 671
Author(s):  
Oihane Pikatza-Menoio ◽  
Amaia Elicegui ◽  
Xabier Bengoetxea ◽  
Neia Naldaiz-Gastesi ◽  
Adolfo López de Munain ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons (MNs) and severe muscle atrophy without effective treatment. Most research on ALS has been focused on the study of MNs and supporting cells of the central nervous system. Strikingly, the recent observations of pathological changes in muscle occurring before disease onset and independent from MN degeneration have bolstered the interest for the study of muscle tissue as a potential target for delivery of therapies for ALS. Skeletal muscle has just been described as a tissue with an important secretory function that is toxic to MNs in the context of ALS. Moreover, a fine-tuning balance between biosynthetic and atrophic pathways is necessary to induce myogenesis for muscle tissue repair. Compromising this response due to primary metabolic abnormalities in the muscle could trigger defective muscle regeneration and neuromuscular junction restoration, with deleterious consequences for MNs and thereby hastening the development of ALS. However, it remains puzzling how backward signaling from the muscle could impinge on MN death. This review provides a comprehensive analysis on the current state-of-the-art of the role of the skeletal muscle in ALS, highlighting its contribution to the neurodegeneration in ALS through backward-signaling processes as a newly uncovered mechanism for a peripheral etiopathogenesis of the disease.


2011 ◽  
Vol 7 (2-4) ◽  
pp. 199-203 ◽  
Author(s):  
Farah Lotfi Kashani ◽  
Dor Mohammad Kordi-Tamandani ◽  
Roya Sahranavard ◽  
Mohammad Hashemi ◽  
Farzaneh Kordi-Tamandani ◽  
...  

Glutathione S-transferases (GSTs) are major intracellular antioxidants, which, impaired in their function, are involved in the progress of schizophrenia (SCZ). The aim of this case-control study was to investigate the association between the polymorphism of glutathione S-transferases M1 (GSTM1), T1 (GSTT1), the glutathione S-transferase P1 gene (GSTP1) and SCZ. We isolated genomic DNA from peripheral blood of 93 individuals with SCZ and 99 healthy control subjects' genotypes analyzing them for GSTM1, GSTT1 and GSTP1 using polymerase chain reaction. The analysis of the gene–gene interaction between GSTs indicated that the magnitude of the association was greater for the combined AG/GSTT1 & GSTM1 genotypes (OR = 2.51; 95% CI: 1.13–5.63, P = 0.02). The AG and combined AG + GG genotypes of GSTP1 increased the risk of SCZ (OR = 1.83; 95% CI: 0.94–3.75 and OR = 1.71; 95% CI: 0.92–3.19, respectively). The genotypes of GSTT/NULL, NULL/GSTM and NULL/NULL increased the risk of SCZ (OR = 2.05; 95% CI: 0.9–4.74; OR = 2.0; 95% CI: 1.68–2.31; and OR = 1.8; 95% CI: 0.57–2.46, respectively). The present study supports previous data that suggest that impairment in the function of GSTs genes may increase the risk of SCZ.


Author(s):  
Saira Nawaz ◽  
Hafiz Muhammad Tahir ◽  
Muhammad Asif Mahmood ◽  
Muhammad Summer ◽  
Shaukat Ali ◽  
...  

Abstract Aedes aegypti (Linnaeus, 1762) is a major vector responsible for dengue transmission. Insecticides are being used as the most effective tool to control vector populations in Lahore, Pakistan. Control of Ae. aegypti is threatened by the development of resistance against insecticides. The current status of insecticide resistance was evaluated against pyrethroids (deltamethrin, cypermethrin, and lambda-cyhalothrin) in different populations of Lahore (Model Town, Mishri Shah, Sadar Cantt, Walton, and Valencia). The susceptibility of the larval and adult populations was tested following the standard WHO guidelines. Moderate to high levels of resistance were found against pyrethroids in the larval (RR50: 3.6–27.2 and RR90: 5–90) and adult populations (percentage mortality < 98%). Biochemical assays revealed a statistically significant increase in the enzyme level in all field populations compared to the laboratory strain. The value of esterase was one-fold higher, monooxygenase was 3.9- to 4.7-fold higher, and glutathione S-transferases was 1.9- to 2.6-fold higher in field populations compared to the laboratory strain. These results depict the presence of resistance against deltamethrin, cypermethrin, and lambda-cyhalothrin in field populations of Lahore mediated by metabolic enzymes i.e. esterases, monooxygenases, and glutathione S-transferase.


Parasitology ◽  
2008 ◽  
Vol 135 (10) ◽  
pp. 1215-1223 ◽  
Author(s):  
A. JOACHIM ◽  
B. RUTTKOWSKI

SUMMARYOesophagostomum dentatum stages were investigated for glutathione S-transferase (GST) expression at the protein and mRNA levels. GST activity was detected in all stages (infectious and parasitic stages including third- and fourth-stage larvae of different ages as well as males and females) and could be dose-dependently inhibited with sulfobromophthalein (SBP). Addition of SBP to in vitro larval cultures reversibly inhibited development from third- to fourth-stage larvae. Two glutathione-affinity purified proteins (23 and 25 kDa) were detected in lysates of exsheathed third-stage larvae by SDS-PAGE. PCR-primers were designed based on peptide sequences and conserved GST sequences of other nematodes for complete cDNA sequences (621 and 624 nt) of 2 isoforms, Od-GST1 and Od-GST2, with 72% nucleotide similarity and 75% for the deduced proteins. Genomic sequences consisted of 7 exons and 6 introns spanning 1296 bp for Od-GST1 and 1579 and 1606 bp for Od-GST2. Quantitative real-time-PCR revealed considerably elevated levels of Od-GST1 in the early parasitic stages and slightly reduced levels of Od-GST2 in male worms. Both Od-GSTs were most similar to GST of Ancylostoma caninum (nucleotides: 73 and 70%; amino acids: 80 and 73%). The first three exons (75 amino acids) corresponded to a synthetic prostaglandin D2 synthase (53% similarity). O. dentatum GSTs might be involved in intrinsic metabolic pathways which could play a role both in nematode physiology and in host-parasite interactions.


2021 ◽  
Vol 25 (4) ◽  
pp. 497-502
Author(s):  
D. Shehu ◽  
S Danlami ◽  
M. Ya’u ◽  
A. Babandi ◽  
H.M. Yakasai ◽  
...  

Glutathione s-transferases(GSTs) are enzymes involved in the conjugation and deactivation of various xenobiotics including drugs. Thisin-silico study was undertaken in order to investigate the interaction between beta-class glutathione s-transferase and five selected antibiotics, namely; ampicillin, tetracycline, chloramphenicol, ciprofloxacin and cephalexin using molecular docking study. RaptorX server was used to predict the amino acids involved at the binding sitewhile molecular docking study was employed in order to investigate the binding interactions.RaptorX predicted several amino acids which were different from the ones observed in molecular docking because of the variability in the substrate binding site of GSTs however, all the amino acids predicted by RaptorX were also found to be involved in the GSH binding.Lys107, Phe109, Ser110, Leu113, Trp114, His115 and Arg123, Leu168 were the amino acids involved in the binding of various antibiotics to the substrate binding site of the protein while Ala9, Cys10, Leu32, Tyr51, Val52, Pro53, Glu65 and Ala66were involved in the binding of the co-substrate GSH to the binding site of the protein. The results indicated that all the antibiotics showed a good binding affinity with the beta class GST and are therefore capable of deactivating the drugs. With these, finding a beta class GST inhibitors alongside antibiotics during a treatment of diseases will be of beneficial in the current fight against antibiotic resistance.


2016 ◽  
Vol 24 (4) ◽  
pp. 377-386
Author(s):  
Mureșan Daniel ◽  
Andreea Cătană ◽  
Radu Anghel Popp ◽  
Diana Elena Dumitraș ◽  
Florin Stamatian ◽  
...  

Abstract Aim: The present study aim to analyze the relationship between GST M/T genotypes of glutathione S-transferases and cervical intraepithelial neoplasia. Materials and Methods: A prospective case-control study has been designed including 69 cases with different degrees of cervical dysplasia and 107 controls. All patients had been examined colposcopically. For every patient both cervical and blood specimen have been obtained. The peripheral blood was used for GST M/T genotyping. The statistical analysis was performed using OR and chi-square at a level of significance inferior to 0.05. Results: No statistically significant differences had been found between cases and controls for GST T-/M- geno-type (T-/M-, χ2=0.03, p= 0.8610) and T+/M+ χ2=0.65, p = 0.4197. Patients with in situ carcinoma had significant GST genotype association for T-/M+ genotype (OR=4.66, CI 95% [0.6528,24.9725], χ2=4.6, p=0.0314) and for T+/M- genotype (OR=0.12, CI 95% [0.0027,0.9465], χ2=0.05, p=0.0219). Conclusion: The combination of GST genotypes can be included in a predictive score for patients with cervical carcinoma.


Insects ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 339
Author(s):  
Fang Tang ◽  
Huizhen Tu ◽  
Qingli Shang ◽  
Xiwu Gao ◽  
Pei Liang

Plants accumulate phenolic compounds such as tannic acid to resist insect herbivores. The survival of insects exposed to toxic secondary metabolites depends on the detoxification metabolism mediated by limited groups of glutathione S-transferases (GSTs). Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) is an important foliar pest of poplar trees. GSTs play an important role in xenobiotic detoxification in M. troglodyta. Five GST genes were identified in M. troglodyta and were classified into five different cytosolic GST classes, delta, omega, sigma, theta, and zeta. Real-time fluorescent quantitative polymerase chain reaction (qPCR) was used to determine the mRNA expression of the five cloned GSTs in the midguts and fat bodies of M. troglodyta. The mRNA expression of the five GSTs was significantly induced when M. troglodyta was exposed to tannic acid. To further understand the tannic acid regulatory cascade, the 5′-flanking promoter sequences of the five MtGSTs were isolated by genome walking methods, and the promoters were very active and induced by tannic acid. In summary, the induction of GST mRNA expression was due to the response of five MtGST promoters to tannic acid. Therefore, MtGST promoters play an important role in the regulation of GST transcription.


1980 ◽  
Vol 189 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Barbara F. Hales ◽  
Christiane Hachey ◽  
Bernard Robaire

The presence of the glutathione S-transferases, enzymes that catalyse the conjugation of glutathione with a variety of compounds, is reported here, for the first time, in the mammalian epididymis–vas deferens. These glutathione S-transferases, approx. 50% of those from rat liver on a per-mg-of-protein basis, are resolved by isoelectric focusing into six peaks, each with a characteristic isoelectric point and substrate specificity. By these same criteria, the first three peaks (pI 8.9, 8.2 and 7.8) can be identified as transferases B, A and C respectively. The fifth peak (pI7.2) may correspond to transferase M; the fourth (pI7.5) and sixth (pI7.0) peaks do not correspond to previously described transferases. The distribution of transferase activity towards any one substrate studied differs in sequential sections of the epididymis and vas deferens; in addition, the longitudinal-distribution pattern differs for each of the three substrates studied. Isoelectric focusing of the cytosol fractions of the different sections further substantiates these observations. The potential significance of these enzymes and of their distribution in terms of epididymal function, maturation of spermatozoa, is discussed.


Sign in / Sign up

Export Citation Format

Share Document