scholarly journals Applications of Plasma-Activated Liquid in the Medical Field

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1700
Author(s):  
Sungryeal Kim ◽  
Chul-Ho Kim

Much progress has been made since plasma was discovered in the early 1900s. The first form of plasma was thermal type, which was limited for medical use due to potential thermal damage on living cells. In the late 1900s, with the development of a nonthermal atmospheric plasma called cold plasma, profound clinical research began and ‘plasma medicine’ became a new area in the academic field. Plasma began to be used mainly for environmental problems, such as water purification and wastewater treatment, and subsequent research on plasma and liquid interaction led to the birth of ‘plasma-activated liquid’ (PAL). PAL is currently used in the fields of environment, food, agriculture, nanoparticle synthesis, analytical chemistry, and sterilization. In the medical field, PAL usage can be expanded for accessing places where direct application of plasma is difficult. In this review, recent studies with PAL will be introduced to inform researchers of the application plan and possibility of PAL in the medical field.

Author(s):  
Anikate Sood ◽  
Shweta Agarwal

Nanotechnology is the most sought field in biomedical research. Metallic nanoparticles have wide applications in the medical field and have gained the attention of various researchers for advanced research for their application in pharmaceutical field. A variety of metallic nanoparticles like gold, silver, platinum, palladium, copper and zinc have been developed so far. There are different methods to synthesize metallic nanoparticles like chemical, physical, and green synthesis methods. Chemical and physical approaches suffer from certain drawbacks whereas green synthesis is emerging as a nontoxic and eco-friendly approach in production of metallic nanoparticles. Green synthesis is further divided into different approaches like synthesis via bacteria, fungi, algae, and plants. These approaches have their own advantages and disadvantages. In this article, we have described various metallic nanoparticles, different modes of green synthesis and brief description about different metabolites present in plant that act as reducing agents in green synthesis of metallic nanoparticles. 


Plasma ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 218-228 ◽  
Author(s):  
Xiaoqian Cheng ◽  
Warren Rowe ◽  
Lawan Ly ◽  
Alexey Shashurin ◽  
Taisen Zhuang ◽  
...  

Triple-negative breast cancer is a phenotype of breast cancer where the expression level of estrogen, progesterone and human epidermal growth factor receptor 2 (HER2) receptors are low or absent. It is more frequently diagnosed in younger and premenopausal women, among which African and Hispanic have a higher rate. Cold atmospheric plasma has revealed its promising ant-cancer capacity over the past two decades. In this study, we report the first cold plasma jet delivered by the Canady Cold Plasma Conversion Unit and characterization of its electric and thermal parameters. The unit effectively reduced the viability of triple-negative breast cancer up to 80% without thermal damage, providing a starting point for future clinical trials.


Plasma ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 189-200 ◽  
Author(s):  
Lawan Ly ◽  
Sterlyn Jones ◽  
Alexey Shashurin ◽  
Taisen Zhuang ◽  
Warren Rowe ◽  
...  

The use of plasma energy has expanded in surgery and medicine. Tumor resection in surgery and endoscopy has incorporated the use of a plasma scalpel or catheter for over four decades. A new plasma energy has expanded the tools in surgery: Cold Atmospheric Plasma (CAP). A cold plasma generator and handpiece are required to deliver the CAP energy. The authors evaluated a new Cold Plasma Jet System. The Cold Plasma Jet System consists of a USMI Cold Plasma Conversion Unit, Canady Helios Cold Plasma® Scalpel, and the Canady Plasma® Scalpel in Hybrid and Argon Plasma Coagulation (APC) modes. This plasma surgical system is designed to remove the target tumor with minimal blood loss and subsequently spray the local area with cold plasma. In this study, various operational parameters of the Canady Plasma® Scalpels were tested on ex vivo normal porcine liver tissue. These conditions included various gas flow rates (1.0, 3.0, 5.0 L/min), powers (20, 40, 60 P), and treatment durations (30, 60, 90, 120 s) with argon and helium gases. Plasma length, tissue temperature changes, and depth and eschar injury magnitude measurements resulting from treatment were taken into consideration in the comparison of the scalpels. The authors report that a new cold plasma jet technology does not produce any thermal damage to normal tissue.


2021 ◽  
Vol 886 ◽  
pp. 177-182
Author(s):  
Ban H. Adil ◽  
A.S. Obaid ◽  
Maysaa R. Naeemah ◽  
Diana N. Hashem ◽  
Sala S. Hamza

This study illustrates effect of cold plasma CAP on the mineral blood components in vivo. the mineral blood component (Ca, Na, Cl, K and Fe) are used. Floating Electrode-Dielectric Barrier Discharge (FE-DBD) system of probe diameter 4cm is used for this purpose, and variable voltage (0-20) kV and variable frequency (0-30) kHz, the output power was ranged from (10 - 70) W. the effect of cold atmospheric plasma on mineral blood is studied with different exposure durations (30,45,60) sec. As the plasma exposure duration increases, the calcium, potassium and iron components in the blood increased, while The sodium and chlorine elements decreased. These results give an indication of the cold plasma receptor to be used to treat many diseases related to mineral blood components.


Author(s):  
Harsha Rao ◽  
Lakshminarayana Rao ◽  
Haritha Haridas ◽  
D. K. Manju ◽  
S. Swetha ◽  
...  

2014 ◽  
Vol 805 ◽  
pp. 149-154
Author(s):  
M.A. Martinez ◽  
J. Abenojar ◽  
N. Encinas

Polyolefins are increasingly used in the construction of lightweight structures. Due to their low surface energy, it is difficult to have a proper bond with adhesives and paints. By using cold plasma treatments, these surfaces can be activated through the formation of highly reactive functional groups that can promote high strength adhesive bonds. This paper compares the results of cold plasma treatments using two techniques (low pressure and atmospheric plasma torch) applied on polypropylene and high density polyethylene. The obtained data allow the demonstration of a higher effectiveness of atmospheric plasma, with a significant increase in surface energy in both materials.


2020 ◽  
Vol 7 (4) ◽  
pp. 93-96
Author(s):  
R. Jamshidi ◽  
K. Hajizadeh

Regarding the fact that cell shape indicates cell health and is of particular importance in the evaluation of new therapies, in this study, stem cell deformation during Atmospheric Pressure Plasma (APP) treatment was investigated. Given that, cell deformation is a warning of cell damage, it is therefore expected that APP-based therapy, a new modern technology that is expanding worldwide, will not lead to the deformation of normal cells. Here, the stem cells exposed to Helium-fed jet plasma, with two di erent powers of 15 and 25W. Moreover, the duration of exposure was changed (30, 50, 70, and 90 seconds) to determine the most appropriate exposure time and voltage, which maintains stem cells’ health condition. First of all, it was found that cold plasma at low power does not change the shape and elongation of stem cells. Besides, it was found that if the power of a cold plasma source is 25W, it will raise cell growth rate. In this paper, the gas ow rate of the helium plasma jet was set to 3.9 liters per minute, and a plasma source frequency of 30kHz was selected.


2020 ◽  
Author(s):  
Zhitong Chen ◽  
Gustavo Garcia ◽  
Vaithilingaraja Arumugaswami ◽  
Richard E. Wirz

SARS-CoV-2 infectious virions are viable on various surfaces (e.g., plastic, metals, cardboard) for several hours. This presents a transmission cycle for the human infection that can be broken by developing new inactivation approaches. We employed an efficient cold atmospheric plasma (CAP) with argon feed gas to inactivate SARS-CoV-2 on various surfaces including plastic, metal, cardboard, basketball composite leather, football leather, and baseball leather. These results demonstrate the great potential of CAP as a safe and effective means to prevent virus transmission and infections.


2019 ◽  
Vol 11 (34) ◽  
pp. 30621-30630 ◽  
Author(s):  
Li Lin ◽  
Dayun Yan ◽  
Eda Gjika ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Sign in / Sign up

Export Citation Format

Share Document