scholarly journals Chitosan Cross-Linking with Acetaldehyde Acetals

Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Alexander Pestov ◽  
Yuliya Privar ◽  
Arseny Slobodyuk ◽  
Andrey Boroda ◽  
Svetlana Bratskaya

Here we demonstrate the possibility of using acyclic diethylacetal of acetaldehyde (ADA) with low cytotoxicity for the fabrication of hydrogels via Schiff bases formation between chitosan and acetaldehyde generated in situ from acetals in chitosan acetate solution. This approach is more convenient than a direct reaction between chitosan and acetaldehyde due to the better commercial availability and higher boiling point of the acetals. Rheological data confirmed the formation of intermolecular bonds in chitosan solution after the addition of acetaldehyde diethyl acetal at an equimolar NH2: acetal ratio. The chemical structure of the reaction products was determined using elemental analysis and 13C NMR and FT-IR spectroscopy. The formed chitosan-acetylimine underwent further irreversible redox transformations yielding a mechanically stable hydrogel insoluble in a broad pH range. The reported reaction is an example of when an inappropriate selection of acid type for chitosan dissolution prevents hydrogel formation.

2008 ◽  
Vol 74 (11) ◽  
pp. 3426-3433 ◽  
Author(s):  
Munir A. Anwar ◽  
Slavko Kralj ◽  
Marc J. E. C. van der Maarel ◽  
Lubbert Dijkhuizen

ABSTRACT Fructansucrase enzymes polymerize the fructose moiety of sucrose into levan or inulin fructans, with β(2-6) and β(2-1) linkages, respectively. The probiotic bacterium Lactobacillus johnsonii strain NCC 533 possesses a single fructansucrase gene (open reading frame AAS08734) annotated as a putative levansucrase precursor. However, 13C nuclear magnetic resonance (NMR) analysis of the fructan product synthesized in situ revealed that this is of the inulin type. The ftf gene of L. johnsonii was cloned and expressed to elucidate its exact identity. The purified L. johnsonii protein was characterized as an inulosucrase enzyme, producing inulin from sucrose, as identified by 13C NMR analysis. Thin-layer chromatographic analysis of the reaction products showed that InuJ synthesized, besides the inulin polymer, a broad range of fructose oligosaccharides. Maximum InuJ enzyme activity was observed in a pH range of 4.5 to 7.0, decreasing sharply at pH 7.5. InuJ exhibited the highest enzyme activity at 55°C, with a drastic decrease at 60°C. Calcium ions were found to have an important effect on enzyme activity and stability. Kinetic analysis showed that the transfructosylation reaction of the InuJ enzyme does not obey Michaelis-Menten kinetics. The non-Michaelian behavior of InuJ may be attributed to the oligosaccharides that were initially formed in the reaction and which may act as better acceptors than the growing polymer chain. This is only the second example of the isolation and characterization of an inulosucrase enzyme and its inulin (oligosaccharide) product from a Lactobacillus strain. Furthermore, this is the first Lactobacillus strain shown to produce inulin polymer in situ.


2005 ◽  
Vol 61 (1-2) ◽  
pp. 159-163 ◽  
Author(s):  
Sho Kataoka ◽  
Enkyu Lee ◽  
M. Isabel Tejedor-Tejedor ◽  
Marc A. Anderson

2020 ◽  
Vol 3 (01) ◽  
pp. 27-40
Author(s):  
Amir Vahid*© ◽  
Masoud Sohrab Sohrab

In this study oils used direct influence sodium metallic on oxidation products and refining with the Mesoporous silicate material (MCM-41) and also silicate absorbents was synthesized and functionalized with aluminum salt through wet impreghation method (18wt%Al-MCM-41) (36wt% Al-MCM-41). Physical and structural properties has been investigated by FT-IR, BET,XRD and FESEM methods which shows a succful synthesis of the nano porous material. First step for reducing acid number oil we used direct reaction beetwen sodium metalic and used oil, after this step refining used oil by MCM-41 abosrbent has done. The effect of some parameters such as contact time, temperature and the dosage  has been determined and optimized by respons surface method (RSM). The results show that acid number decrease obtained 150 ,60min and 200% of dosage. Optimum condation for absorbent reaction products and new oxidation products by MCM-41 obtained contact time of 120min temperature (120oC) and dosage 200% .


Author(s):  
Steven M. Le Vine ◽  
David L. Wetzel

In situ FT-IR microspectroscopy has allowed spatially resolved interrogation of different parts of brain tissue. In previous work the spectrrscopic features of normal barin tissue were characterized. The white matter, gray matter and basal ganglia were mapped from appropriate peak area measurements from spectra obtained in a grid pattern. Bands prevalent in white matter were mostly associated with the lipid. These included 2927 and 1469 cm-1 due to CH2 as well as carbonyl at 1740 cm-1. Also 1235 and 1085 cm-1 due to phospholipid and galactocerebroside, respectively (Figs 1and2). Localized chemical changes in the white matter as a result of white matter diseases have been studied. This involved the documentation of localized chemical evidence of demyelination in shiverer mice in which the spectra of white matter lacked the marked contrast between it and gray matter exhibited in the white matter of normal mice (Fig. 3).The twitcher mouse, a model of Krabbe’s desease, was also studied. The purpose in this case was to look for a localized build-up of psychosine in the white matter caused by deficiencies in the enzyme responsible for its breakdown under normal conditions.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 824
Author(s):  
Przemysław J. Jodłowski ◽  
Izabela Czekaj ◽  
Patrycja Stachurska ◽  
Łukasz Kuterasiński ◽  
Lucjan Chmielarz ◽  
...  

The objective of our study was to prepare Y-, USY- and ZSM-5-based catalysts by hydrothermal synthesis, followed by copper active-phase deposition by either conventional ion-exchange or ultrasonic irradiation. The resulting materials were characterized by XRD, BET, SEM, TEM, Raman, UV-Vis, monitoring ammonia and nitrogen oxide sorption by FT-IR and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). XRD data confirmed the purity and structure of the Y/USY or ZSM-5 zeolites. The nitrogen and ammonia sorption results indicated that the materials were highly porous and acidic. The metallic active phase was found in the form of cations in ion-exchanged zeolites and in the form of nanoparticle metal oxides in sonochemically prepared catalysts. The latter showed full activity and high stability in the SCR deNOx reaction. The faujasite-based catalysts were fully active at 200–400 °C, whereas the ZSM-5-based catalysts reached 100% activity at 400–500 °C. Our in situ DRIFTS experiments revealed that Cu–O(NO) and Cu–NH3 were intermediates, also indicating the role of Brønsted sites in the formation of NH4NO3. Furthermore, the results from our experimental in situ spectroscopic studies were compared with DFT models. Overall, our findings suggest two possible mechanisms for the deNOx reaction, depending on the method of catalyst preparation (i.e., conventional ion-exchange vs. ultrasonic irradiation).


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 533 ◽  
Author(s):  
Josué A. Torres-Ávalos ◽  
Leonardo R. Cajero-Zul ◽  
Milton Vázquez-Lepe ◽  
Fernando A. López-Dellamary ◽  
Antonio Martínez-Richa ◽  
...  

Design of a smart drug delivery system is a topic of current interest. Under this perspective, polymer nanocomposites (PNs) of butyl acrylate (BA), methacrylic acid (MAA), and functionalized carbon nanotubes (CNTsf) were synthesized by in situ emulsion polymerization (IEP). Carbon nanotubes were synthesized by chemical vapor deposition (CVD) and purified with steam. Purified CNTs were analyzed by FE-SEM and HR-TEM. CNTsf contain acyl chloride groups attached to their surface. Purified and functionalized CNTs were studied by FT-IR and Raman spectroscopies. The synthesized nanocomposites were studied by XPS, 13C-NMR, and DSC. Anhydride groups link CNTsf to MAA–BA polymeric chains. The potentiality of the prepared nanocomposites, and of their pure polymer matrices to deliver hydrocortisone, was evaluated in vitro by UV–VIS spectroscopy. The relationship between the chemical structure of the synthesized nanocomposites, or their pure polymeric matrices, and their ability to release hydrocortisone was studied by FT-IR spectroscopy. The hydrocortisone release profile of some of the studied nanocomposites is driven by a change in the inter-associated to self-associated hydrogen bonds balance. The CNTsf used to prepare the studied nanocomposites act as hydrocortisone reservoirs.


1982 ◽  
Vol 15 ◽  
Author(s):  
W. S. Fyfe

ABSTRACTSelection of the best rock types for radwaste disposal will depend on their having minimal permeability, maximal flow dispersion, minimal chance of forming new wide aperture fractures, maximal ion retention, and minimal thermal and mining disturbance. While no rock is perfect, thinly bedded complex sedimentary sequences may have good properties, either as repository rocks, or as cover to a repository.Long time prediction of such favorable properties of a rock at a given site may be best modelled from studies of in situ rock properties. Fracture flow, dispersion history, and geological stability can be derived from direct observations of rocks themselves, and can provide the parameters needed for convincing demonstration of repository security for appropriate times.


1994 ◽  
Vol 48 (10) ◽  
pp. 1208-1212 ◽  
Author(s):  
J. J. Benítez ◽  
I. Carrizosa ◽  
J. A. Odriozola

The reactivity of a Lu2O3-promoted Rh/Al2O3 catalyst in the CO/H2 reaction is reported. Methane, heavier hydrocarbons, methanol, and ethanol are obtained. In situ DRIFTS has been employed to record the infrared spectra under the actual reaction conditions. The structure of the observed COads DRIFTS bands has been resolved into its components. The production of oxygenates (methanol and ethanol) has been correlated with the results of the deconvolution calculation. Specific sites for the production of methanol and ethanol in the CO/H2 reaction over a Rh,Lu2O3/Al2O3 catalyst are proposed.


Sign in / Sign up

Export Citation Format

Share Document