scholarly journals Design of Magnetic Nanoplatforms for Cancer Theranostics

Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Wangbo Jiao ◽  
Tingbin Zhang ◽  
Mingli Peng ◽  
Jiabao Yi ◽  
Yuan He ◽  
...  

Cancer is the top cause of death globally. Developing smart nanomedicines that are capable of diagnosis and therapy (theranostics) in one–nanoparticle systems are highly desirable for improving cancer treatment outcomes. The magnetic nanoplatforms are the ideal system for cancer theranostics, because of their diverse physiochemical properties and biological effects. In particular, a biocompatible iron oxide nanoparticle based magnetic nanoplatform can exhibit multiple magnetic–responsive behaviors under an external magnetic field and realize the integration of diagnosis (magnetic resonance imaging, ultrasonic imaging, photoacoustic imaging, etc.) and therapy (magnetic hyperthermia, photothermal therapy, controlled drug delivery and release, etc.) in vivo. Furthermore, due to considerable variation among tumors and individual patients, it is a requirement to design iron oxide nanoplatforms by the coordination of diverse functionalities for efficient and individualized theranostics. In this article, we will present an up–to–date overview on iron oxide nanoplatforms, including both iron oxide nanomaterials and those that can respond to an externally applied magnetic field, with an emphasis on their applications in cancer theranostics.

2014 ◽  
Vol 16 (3) ◽  
pp. R131 ◽  
Author(s):  
Azza Gramoun ◽  
Lindsey A Crowe ◽  
Lionel Maurizi ◽  
Wolfgang Wirth ◽  
Frank Tobalem ◽  
...  

2008 ◽  
Vol 23 (12) ◽  
pp. 3415-3424 ◽  
Author(s):  
Koichiro Hayashi ◽  
Toshifumi Shimizu ◽  
Hidefumi Asano ◽  
Wataru Sakamoto ◽  
Toshinobu Yogo

Size-controlled spinel iron oxide (SIO) nanoparticle/organic hybrid was synthesized in situ from iron (III) allylacetylacetonate (IAA) at around 80 °C. The formation of SIO particles chemically bound with organics was confirmed by infrared and x-ray photoelectron spectroscopy. The sizes of SIO nanoparticles in the hybrids were monodispersed and ranged from 7 to 23 nm under controlled hydrolysis conditions. The hybrid including SIO particles of 7.3 nm was superparamagnetic, whereas those dispersed with particles above 11 nm were ferrimagnetic. The specific absorption rate (SAR) value was dependent upon the magnetic properties of the hybrid at 100 Oe. The SAR was 15.2 W g−1 in a 230 kHz alternating magnetic field and 100 Oe when the crystallite size of SIO particle in the hybrid was 16 nm. The temperatures of agars dispersed with hybrid powders of 5 and 8 mg ml−1 reached the optimum temperature (42 °C) for 17 and 8 min, respectively. The increase in temperature was controlled in terms of the strength of magnetic field. The simulation of heat transfer in the agar phantom model revealed that the suitable temperature distribution for therapy was attained from 15 to 20 min at 230 kHz and 100 Oe.


2020 ◽  
Vol 21 (10) ◽  
pp. 3658
Author(s):  
Min Kyoung Kang ◽  
Tae Jung Kim ◽  
Young-Ju Kim ◽  
Lamie Kang ◽  
Jonghoon Kim ◽  
...  

This study evaluated the potential of iron oxide nanoparticle-loaded human embryonic stem cell (ESC)-derived spherical neural masses (SNMs) to improve the transportation of stem cells to the brain, ameliorate brain damage from intracerebral hemorrhage (ICH), and recover the functional status after ICH under an external magnetic field of a magnet attached to a helmet. At 24 h after induction of ICH, rats were randomly separated into three experimental groups: ICH with injection of phosphate-buffered saline (PBS group), ICH with intravenous injection of magnetosome-like ferrimagnetic iron oxide nanocubes (FION)-labeled SNMs (SNMs* group), and ICH with intravenous injection of FION-labeled SNMs followed by three days of external magnetic field exposure for targeted delivery by a magnet-embedded helmet (SNMs*+Helmet group). On day 3 after ICH induction, an increased Prussian blue-stained area and decreased swelling volume were observed in the SNMs*+Helmet group compared with that of the other groups. A significantly decreased recruitment of macrophages and neutrophils and a downregulation of pro-inflammatory cytokines followed by improved neurological function three days after ICH were observed in the SNMs*+Helmet group. Hemispheric atrophy at six weeks after ICH was significantly decreased in the SNMs*+Helmet group compared with that of the PBS group. In conclusion, we have developed a targeted delivery system using FION tagged to stem cells and a magnet-embedded helmet. The targeted delivery of SNMs might have the potential for developing novel therapeutic strategies for ICH.


Sign in / Sign up

Export Citation Format

Share Document