scholarly journals Chenopodium quinoa to Modulate Innate Myeloid Cells in the Induction of Obesity

2022 ◽  
Vol 8 (1) ◽  
pp. 13
Author(s):  
José Moisés Laparra ◽  
Elena Aguilar-Aguilar ◽  
Claudia Monika Haros

Complex interactions between innate and adaptive immune effectors are an important component in the induction of obesity. Particularly, different subsets of myeloid cells play key roles in metabolic liver diseases and, therefore, are promising targets for intervention strategies. Chenopodium quinoa seeds constitute a good source of immunonutritional compounds, which help prevent high-fat, diet-enhanced innate immune signaling via TLR4/MyD88 that boosts inflammation. Herein, two metabolic mouse models—wild type (WT) and tributyltin treated (TBT)—were used to examine the effects associated with non-alcoholic fatty liver disease (NAFLD); mice were fed with a high-fat diet (HFD) and administered with wheat or C. quinoa bread. Variations in myeloid cells were obtained from a hemogram analysis, and rt-qPCR (mRNA) served to evaluate macrophage markers (i.e., CD68/CD206 ratio) as well as liver inflammation (i.e., Lyve-1) to gain insights into their selective functional differentiation into metabolically injured livers. Only administration of C. quinoa bread prevented alterations in the liver/body weight ratio either in WT animals or those treated with TBT. These effects were associated with significantly increased variations in the peripheral myeloid cell population. Hepatic mRNA markers revealed that C. quinoa enables a selective functional differentiation and function of intrahepatic monocyte-derived macrophages preserving tissue integrity and function.

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 222-OR
Author(s):  
MICHAEL J. NASH ◽  
TAYLOR K. SODERBORG ◽  
RACHEL C. JANSSEN ◽  
ERIC M. PIETRAS ◽  
JACOB E. FRIEDMAN

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takuya Kawamura ◽  
Hiroaki Tanaka ◽  
Ryota Tachibana ◽  
Kento Yoshikawa ◽  
Shintaro Maki ◽  
...  

AbstractWe aimed to investigate the effects of maternal tadalafil therapy on fetal programming of metabolic function in a mouse model of fetal growth restriction (FGR). Pregnant C57BL6 mice were divided into the control, L-NG-nitroarginine methyl ester (L-NAME), and tadalafil + L-NAME groups. Six weeks after birth, the male pups in each group were given a high-fat diet. A glucose tolerance test (GTT) was performed at 15 weeks and the pups were euthanized at 20 weeks. We then assessed the histological changes in the liver and adipose tissue, and the adipocytokine production. We found that the non-alcoholic fatty liver disease activity score was higher in the L-NAME group than in the control group (p < 0.05). Although the M1 macrophage numbers were significantly higher in the L-NAME/high-fat diet group (p < 0.001), maternal tadalafil administration prevented this change. Moreover, the epididymal adipocyte size was significantly larger in the L-NAME group than in the control group. This was also improved by maternal tadalafil administration (p < 0.05). Further, we found that resistin levels were significantly lower in the L-NAME group compared to the control group (p < 0.05). The combination of exposure to maternal L-NAME and a high-fat diet induced glucose impairment and non-alcoholic fatty liver disease. However, maternal tadalafil administration prevented these complications. Thus, deleterious fetal programming caused by FGR might be modified by in utero intervention with tadalafil.


2021 ◽  
Vol 32 (4) ◽  
pp. 637-644
Author(s):  
Jamal Nasser Saleh Al-maamari ◽  
Mahardian Rahmadi ◽  
Sisca Melani Panggono ◽  
Devita Ardina Prameswari ◽  
Eka Dewi Pratiwi ◽  
...  

Abstract Objectives The study aimed to determine the effect of quercetin on the expression of primary regulator gene involved in lipogenesis and triglycerides synthesis in the liver, and the sterol regulatory binding protein-1c (SREBP-1c) mRNA in non-alcoholic fatty liver disease (NAFLD) with a high-fat diet (HFD) model. Methods Fifty-six Balb/c mice were divided into seven groups: standard feed; HFD; HFD and quercetin 50 mg/kg for 28 days; HFD and quercetin 100 mg/kg BW for 28 days; HFD and quercetin 50 mg/kg for 14 days; HFD and quercetin 100 mg/kg for 14 days; HFD and repaired fed for 14 days. Quercetin was administered intraperitoneally. The animals were sacrificed 24 h after the last treatment; the liver was taken for macroscopic, histopathological staining using hematoxylin–eosin and reverse transcription-PCR analysis sample. Results HFD significantly increased the expression of SREBP-1c mRNA; meanwhile, quercetin and repaired feed significantly reduced the expression of SREBP-1c mRNA in the liver. Quercetin at a dose of 50 mg/kg and 100 mg/kg also improved liver cells’ pathological profile in high-fat diet NAFLD. Conclusions The present study suggests that quercetin has an inhibitory effect on SREBP-1c expression and improved liver pathology in NAFLD mice.


2014 ◽  
Vol 10 (6) ◽  
pp. 2917-2923 ◽  
Author(s):  
XIANG WANG ◽  
QIAOHUA REN ◽  
TAO WU ◽  
YONG GUO ◽  
YONG LIANG ◽  
...  

2013 ◽  
Vol 41 (03) ◽  
pp. 487-502 ◽  
Author(s):  
Wei-Xi Cui ◽  
Jie Yang ◽  
Xiao-Qing Chen ◽  
Qian Mao ◽  
Xiang-Lan Wei ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) has become a major challenge to the healthcare system. This study was designed to evaluate the effect of the triterpenoid-rich fraction (TF) from Ilex hainanensis Merr. on NAFLD. Male Sprague-Dawley (SD) rats were fed a normal diet (control) or high fat diet (NAFLD model). After four weeks, the high fat diet group was orally administrated TF (250 mg/kg) for another two weeks. High fat diet fed rats displayed hyperlipidemia and a decline in liver function compared with control. However, administration with TF could effectively improve these symptoms, as demonstrated by decreasing the plasma levels of triglyceride (p <0.05), total cholesterol (p < 0.01), low-density lipoprotein cholesterol (p < 0.05), alanine transaminase (p < 0.05), aspartate aminotransferase (p < 0.01), liver index (p < 0.05) and insulin resistance index (p < 0.05) while increasing the high-density lipoprotein cholesterol (p < 0.05). Meanwhile, histopathological examination of livers also showed that TF could reduce the incidence of liver lesions induced by high fat diet. Furthermore, TF could alleviate oxidative stress and inflammation status indicated by the decline malondialdehyde and superoxide dismutase levels (p < 0.01, both) and levels of interleukin 6 and tumor necrosis factor-α (p < 0.05). In addition, immunohistochemistry showed TF evidently elevated the peroxisome proliferator-activated receptor (PPARα) expression (p < 0.01), while it diminished the Cytochrome P450 2E1 (CYP2E1) expression (p < 0.01) in liver. These results demonstrate that TF has potential ability to protect liver against NAFLD by regulating lipids metabolism and alleviating insulin resistance, inflammation and oxidative stress. This effect might be associated with regulating PPARα and CYP2E1 expression.


2022 ◽  
Author(s):  
Somayeh Aslani ◽  
Saman Bahrambeigi ◽  
Davoud Sanajou

Despite dietary/lifestyle modifications as well as glycemic and lipid control, non-alcoholic fatty liver disease (NAFLD) imposes a considerable risk to the patients by advancing to non-alcoholic steatohepatitis (NASH). The present investigation aims to evaluate the protective potential of FPS-ZM1, a selective inhibitor for advanced glycation end products (RAGE), against circulating indices of liver injury in high fat diet-induced diabetic mice. FPS-ZM1 at 0.5. 1, and 2 mg/kg (orally) was administered for 2 months, starting 4 months after provision of the high-fat diet. Tests for glucose homeostasis, liver injury markers, and hepatic/plasma miR-21 expressions were performed. FPS-ZM1 attenuated diabetes-induced elevations in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamate dehydrogenase (GLD), and alpha glutathione-S-transferase (α-GST) as well as alkaline phosphatase (ALP) and gamma-glutamyl transpeptidase (GGT). It also decreased diabetes-associated elevations in serum ferritin and plasma cytokeratin 18 fragments. Additionally, FPS-ZM1 down-regulated elevated expressions of miR-21 in the liver and plasma of diabetic mice. These findings highlight the benefits of FPS-ZM in alleviating liver injury in mice evoked by high-fat diet-induced type 2 diabetes and suggest FPS-ZM1 as a new potential adjunct to the conventional diet/lifestyle modification and glycemic control in diabetics.


Author(s):  
Sara Ameen Nafeer ◽  
Munaf Zalzala

Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases worldwide, which characterized by steatosis, inflammation, and fibrosis. The aim of this designed study is to evaluate the ability of guggulsterone to prevent high fat diet induced steatohepatitis in mice. Five groups of male mice were selected and treated as the following: group I, mice had free access to standard commercial diet and considered as control group, group II, mice were fed a specially formulated high-fat diet for 12 weeks to induce non-alcoholic liver disease, while groups III, IV and V the mice were administered high fat diet containing guggulsterone at 500, 1000 and 2000 ppm concentration respectively for 12 weeks. Maintaining mice on fat rich diet only resulted in inducing the metabolic and histological NAFLD associated. While the treatment with guggulsterone significantly improves the evaluated markers. These results demonstrate guggulsterone may be useful in preventing the development of steatohepatitis.


Author(s):  
Ana Lemus-Conejo ◽  
Elena Grao-Cruces ◽  
Rocio Toscano ◽  
Lourdes M Varela ◽  
Carmen Claro ◽  
...  

Bioactive peptides are related to the prevention and treatment of many diseases. GPETAFLR is an octapeptide which was isolated from lupine (Lupinus angustifolius L.) and showed anti-inflammatory properties. The aim of this study was to evaluate the potential activity of GPETAFLR to prevent non-alcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-induced obese mice. C57BL/6J mice were fed a standard diet or an HFD. Two of the groups fed the HFD diet were treated with GPETAFLR in their drinking water at 0,5 mg/kg/d or 1 mg/kg/d. To determine the ability of GPETAFLR to improve the onset and progression of NAFLD, histological studies, hepatic enzyme profile, inflammatory cytokine and lipid metabolism-related genes and proteins were analyzed. Our results suggest that HFD-induced inflammatory metabolic disorders were alleviated by treatment with GPETAFLR. In conclusion, dietary lupine consumption could repair HFD-induced hepatic damage, possibly via modifications in the liver&rsquo;s lipid signalling pathways.


Sign in / Sign up

Export Citation Format

Share Document