scholarly journals Cooperative Parent-Mediated Therapy in Children with Fragile X Syndrome and Williams Beuren Syndrome: A Pilot RCT Study of a Transdiagnostic Intervention-Preliminary Data

2021 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Paolo Alfieri ◽  
Francesco Scibelli ◽  
Laura Casula ◽  
Simone Piga ◽  
Eleonora Napoli ◽  
...  

Children with fragile X syndrome and William Beuren syndrome share several socio-communicative deficits. In both populations, around 30/35% of individuals meets criteria for autism spectrum disorder on gold standard instruments. Notwithstanding, few studies have explored feasibility and validity of therapy for socio-communicative deficits in individuals with these genetic conditions. In this study, we present preliminary data on a pilot RCT aimed to verify the effectiveness of cooperative parent-mediated therapy for socio-communicative deficits in a transdiagnostic perspective in a small sample of 12 participants. Our preliminary data showed that the experimental group had significant improvement in one socio-communicative skill (responsivity) and in clinical global impression, while the control group in an adaptive measure of socialization and word production. Implications of these results are then discussed.

2021 ◽  
pp. 003151252110100
Author(s):  
Liangshan Dong ◽  
Bo Shen ◽  
YanLi Pang ◽  
Mingting Zhang ◽  
Yuan Xiang ◽  
...  

The current study evaluated the effectiveness of a motor program that specifically targeted fundamental motor skills (FMS) in children with ASD. The experimental group (n=21) participated in a 9-week program with motor instructions for 80 minutes/day, three days/week, while the control group (n=29) did not participate in the program. We measured FMS (using the Test of Gross Motor Development-3) one-week before, one-week after, and two-months after the program. Children in the experimental group had significantly larger FMS improvements than the controls on both locomotor and ball skills immediately following the program, and these participants showed continuous improvement on locomotor, but not ball skills, at 2-months follow-up. In individual analyses, 80% of children in the experimental group versus 29% of children in the control group showed continuous locomotor skills improvement beyond their pre-test levels. These findings highlight the importance of both a long-term motor development intervention and an individualized approach for evaluating improved FMS among children with ASD.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1108
Author(s):  
Lorena Joga-Elvira ◽  
Jennifer Martinez-Olmo ◽  
María-Luisa Joga ◽  
Carlos Jacas ◽  
Ana Roche-Martínez ◽  
...  

The aim of this research is to analyze the relationship between executive functions and adaptive behavior in girls with Fragile X syndrome (FXS) in the school setting. This study is part of a larger investigation conducted at the Hospital Parc Tauli in Sabadell. The sample consists of a total of 40 girls (26 with FXS and 14 control) aged 7–16 years, who were administered different neuropsychological tests (WISC-V, NEPSY-II, WCST, TOL) and questionnaires answered by teachers (ABAS-II, BRIEF 2, ADHD Rating Scale). The results show that there is a greater interaction between some areas of executive function (cognitive flexibility, auditory attention, and visual abstraction capacity) and certain areas of adaptive behavior (conceptual, practical, social, and total domains) in the FXS group than in the control group. These results suggest that an alteration in the executive functions was affecting the daily functioning of the girls with FXS to a greater extent.


2017 ◽  
Author(s):  
Anubhuti Goel ◽  
Daniel A. Cantu ◽  
Janna Guilfoyle ◽  
Gunvant R. Chaudhari ◽  
Aditi Newadkar ◽  
...  

Atypical sensory processing is a core characteristic in autism spectrum disorders1 that negatively impacts virtually all activities of daily living. Sensory symptoms are predictive of the subsequent appearance of impaired social behavior and other autistic traits2, 3. Thus, a better understanding of the changes in neural circuitry that disrupt perceptual learning in autism could shed light into the mechanistic basis and potential therapeutic avenues for a range of autistic symptoms2. Likewise, the lack of directly comparable behavioral paradigms in both humans and animal models currently limits the translational potential of discoveries in the latter. We adopted a symptom-to-circuit approach to uncover the circuit-level alterations in the Fmr1-/- mouse model of Fragile X syndrome (FXS) that underlie atypical visual discrimination in this disorder4, 5. Using a go/no-go task and in vivo 2-photon calcium imaging in primary visual cortex (V1), we find that impaired discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons, and a decrease in the activity of parvalbumin (PV) interneurons in V1. Restoring visually evoked activity in PV cells in Fmr1-/- mice with a chemogenetic (DREADD) strategy was sufficient to rescue their behavioral performance. Finally, we found that human subjects with FXS exhibit strikingly similar impairments in visual discrimination as Fmr1-/- mice. We conclude that manipulating orientation tuning in autism could improve visually guided behaviors that are critical for playing sports, driving or judging emotions.


2020 ◽  
Author(s):  
Chu-Hui Lin ◽  
Ting Zeng ◽  
Jian-Hong Lin ◽  
Feng Xiao ◽  
Bing-Mei Li ◽  
...  

Abstract Background: Fragile X syndrome (FXS), tightly related to the morbidity of Autism spectrum disorder (ASD), is a common hereditary syndrome often associated with retardation of intelligence. Some key symptoms of ASD such as anxiety, cognitive impairment and social anxiety disorder are also the predominant features in FXS. Children with ASD are often performed with gastrointestinal symptoms. According to the existing research, with the treatment with Bacteroides Fragilis BF839, mice with ASD will have better performance in communication and social behaviours with less anxiety and perceptual disorder. In this article, we have observed the impact of Bacteroides Fragilis BF839, a well-established Chinese bacteria strain with the human intestine origin, on mice with FXS and their behavioural disorders accordingly. Result: Based on the Open Field test, compared to the Fmr1KO group, mice treated with BF839 showed prolonged staying time in the center of the container. This finding suggests that BF839 can improve Fmr1KO mice's self-exploration behaviour and dented their anxiety. The Elevated Plus Maze test indicated BF839 treated mice presented more activities in entering open arms, prolonged time of staying and significantly less distance travelled at the plus-maze, along with less entering behaviours in the closed arms with less time of staying and more distance travelled. This result proved that with the treatment of BF839, Fmr1KO mice have improved ability in recognizing the surrounding environment and greater senses at detecting danger. Three-box Social Interaction test confirmed that BF839 strengthens the social novelty preference of the Fmr1KO mice, proven by their increasing duration and frequency in social interacting with the stranger mouse. The final experiment named the Pool Maze test presented the result that on the fourth day, BF839 treated mice have shown significantly shortened escape latency. Meanwhile, on Day 5, BF839 treated group performed increasing frequency in passing through the platform, which, along with the shortened escape latency, demonstrated BF839 has the function of improving Fmr1KO mice's cognitive capacity and their ability to extract information from the surrounding environment.Conclusion: Based on the outcome of each test performed, Bacteroides Fragilis BF839 can successfully improve Autism related abnormal behaviours in mice with FXS. Bacteroides Fragilis BF839 can be a potential intervention strategy in treating FXS and ASD safely and effectively.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 136
Author(s):  
Karen Kengne Kamga ◽  
Séraphin Nguefack ◽  
Khuthala Minka ◽  
Edmond Wonkam Tingang ◽  
Alina Esterhuizen ◽  
...  

Fragile X Syndrome (FXS), an X-linked dominant monogenic condition, is the main genetic cause of intellectual disability (ID) and autism spectrum disorder (ASD). FXS is associated with an expansion of CGG repeat sequence in the Fragile X Mental Retardation gene 1 (FMR1) on chromosome X. Following a neuropediatric assessment of two male siblings who presented with signs of FXS that was confirmed with molecular testing, we provided cascade counselling and testing to the extended family. A total of 46 individuals were tested for FXS; among them, 58.70% (n = 27) were females. The mean age was 9.4 (±5) years for children and 45.9 (±15.9) years for adults. Pedigree analysis suggested that the founder of these families was likely a normal transmitting male. Four out of 19 males with clinical ID were confirmed to have a full mutation for FXS, while 14/27 females had a pathologic CGG expansion (>56 CGG repeats) on one of their X chromosomes. Two women with premature menopause were confirmed of being carriers of premutation (91 and 101 CGG repeats). We also identified maternal alleles (91 and 126 CGG repeats) which expanded to a full mutation in their offspring (>200 CGG repeats). This study is a rare report on FXS from Africa and illustrates the case scenario of implementing genetic medicine for a neurogenetic condition in a rural setting.


2019 ◽  
Vol 9 (8) ◽  
pp. 202
Author(s):  
Daman Kumari ◽  
Inbal Gazy

Fragile X syndrome (FXS) is the most common heritable form of intellectual disability, as well as the most common known monogenic cause of autism spectrum disorder (ASD), affecting 1 in 4000–8000 people worldwide [...]


2020 ◽  
Vol 123 (6) ◽  
pp. 2101-2121 ◽  
Author(s):  
Anna O. Nguyen ◽  
Devin K. Binder ◽  
Iryna M. Ethell ◽  
Khaleel A. Razak

Autism spectrum disorders (ASD) are commonly associated with sensory sensitivity issues, but the underlying mechanisms are unclear. This study presents novel evidence for neural correlates of auditory hypersensitivity in the developing inferior colliculus (IC) in the Fmr1 knockout (KO) mouse, a mouse model of Fragile X Syndrome (FXS), a leading genetic cause of ASD. Responses begin to show genotype differences between postnatal days 14 and 21, suggesting an early developmental treatment window.


Sign in / Sign up

Export Citation Format

Share Document