scholarly journals Plug and Play Modular Façade Construction System for Renovation for Residential Buildings

Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 419
Author(s):  
Jorge Torres ◽  
Roberto Garay-Martinez ◽  
Xabat Oregi ◽  
J. Ignacio Torrens-Galdiz ◽  
Amaia Uriarte-Arrien ◽  
...  

The present paper focuses on the architectural and constructional features required to ensure that building envelope renovation are safe, functional, and adaptable to the building stock, with particular focus on “plug and play” modular facade construction systems. It presents the design of one such system and how it addresses these issues. The outcome of early-stage functional test with a full-scale mock-up system, as well as its applicability to a real construction project is presented. It is found crucial to obtain high quality information about the status of the existing façade with the use of modern technologies such as topographic surveys or 3D scans and point cloud. Detailed design processes are required to ensure the compatibility of manufacture and installation tolerances, along with anchor systems that deliver flexibility for adjustment, and construction processes adapting standard installation methods to the architectural particularities of each case that may hinder its use or require some modification in each situation. This prefabricated plug and play modular system has been tested by reproducing the holistic methodology and new technologies in the market by means of real demonstrators. When compared to more conventional construction methods, this system achieves savings in a real case of 50% (time), 30% (materials) and 25% (waste), thus achieving significant economic savings.

Author(s):  
Darija Gajić ◽  
Anna Sandak ◽  
Slobodan Peulić ◽  
Črtomir Tavzes ◽  
Tim Mavrič

System of prefabricated modules installed on the existing building envelope is one alternativesolution for deep energy refurbishment of buildings in the European Union. It allows thermalupgrade installation of new parts in the HVAC system. Moreover, some elements of the envelopecan be made of renewable materials. This research compares the residential building stock andidentifies potential types of buildings for energy refurbishment in Bosnia and Herzegovina andSlovenia. It presents refurbishment possibilities of existing residential building stock in bothcountries with prefabricated timber panels. It also presents potential obstacles to the widerapplication of this refurbishment solution.


2021 ◽  
Vol 13 (4) ◽  
pp. 2230
Author(s):  
Kheira Anissa Tabet Aoul ◽  
Rahma Hagi ◽  
Rahma Abdelghani ◽  
Monaya Syam ◽  
Boshra Akhozheya

The built environment accounts for the highest share of energy use and carbon emissions, particularly in emerging economies, caused by population growth and fast urbanization. This phenomenon is further exacerbated under extreme climatic conditions such as those of the United Arab Emirates, the context of this study, where the highest energy share is consumed in buildings, mostly used in the residential sector for cooling purposes. Despite efforts to curb energy consumption through building energy efficiency measures in new construction, substantial existing building stock and construction quality are left out. Construction defects, particularly in the building envelope, are recognized to affect its thermal integrity. This paper aims, first, to detect through thermography field investigation audit construction defects bearing thermal impacts in existing and under-construction residential buildings. Then, through a qualitative analysis, we identify the resulting energy, cost, and health impacts of the identified defects. Results indicate that lack or discontinuity of insulation, thermal bridging through building elements, blockwork defects, and design change discrepancies are the recurrent building and construction defects. The qualitative review analysis indicates substantial energy loss due to lack of insulation, thermal bridging with cost and health implications, while beneficial mitigation measures include consideration of building envelope retrofitting, skilled workmanship, and the call for quality management procedures during construction.


Author(s):  
Nermina Zagora ◽  
Mladen Burazor ◽  
Erdin Salihović

This paper intends to bring attention of both scientific and general audience to the status quo of the existing, residential building stock in Bosnia and Herzegovina, highlighting its energy savings potential. The research results presented in this text may be applicable on two levels: on a larger scale, the policy makers may use this data in the process of development of strategic and EE measures implementation plans, while, on a smaller scale, the individual users may gain practical insight into the benefits of energy saving measures and implement them in their own households. Moreover, the exposed data may be subject to further evaluations, studies and comparisons, while the presented methodology can be used by other researchers in countries where there have not been research activities on the existing residential buildings stock from the EE perspective.


Author(s):  
C. León-Sánchez ◽  
D. Giannelli ◽  
G. Agugiaro ◽  
J. Stoter

Abstract. The 3D BAG v. 2.0 dataset has been recently released: it is a country-wide dataset containing all buildings in the Netherlands, modelled in multiple LoDs (LoD1.2, LoD1.3 and LoD2.2). In particular, the LoD2.2 allows differentiating between different thematic surfaces composing the building envelope. This paper describes the first steps to test and use the 3D BAG 2.0 to perform energy simulations and characterise the energy performance of the building stock. Two well-known energy simulation software packages have been tested: SimStadt and CitySim Pro. Particular care has been paid to generate a suitable, valid CityGML test dataset, located in the municipality of Rijssen-Holten in the central-eastern part of the Netherlands, that has been then used to test the energy simulation tools. Results from the simulation tools have been then stored into the 3D City Database, additionally extended to deal with the CityGML Energy ADE. The whole workflow has been checked in order to guarantee a lossless dataflow.The paper reports on the proposed workflow, the issues encountered, some solutions implemented, and what the next steps will be.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 194
Author(s):  
Alessandra De Angelis ◽  
Fabrizio Ascione ◽  
Rosa Francesca De Masi ◽  
Maria Rosaria Pecce ◽  
Giuseppe Peter Vanoli

The paper introduces a new semi-probabilistic methodology for the definition of energy fragility curves suitable for a macro-classification of building stock inspired to and coupled with the widely adopted method of seismic fragility curves. The approach is applied to the reinforced concrete residential buildings of the Italian stock. Starting from a classification according to the climatic zone and the construction period, some reference buildings in terms of building envelope typologies have been defined and simulated by means of dynamic modeling tools. Then, cumulative distributions of the probability that the primary energy consumption for heating was comparable with certain threshold values are defined according to the climatic conditions expressed with the heating degree days, which constitute the intensity measure for the fragility curves. Finally, by focusing on the interaction points between structural and energetic aspects, it is shown how these curves can be useful for decision-makers with regards to definition of importance and or the level of intervention to be made to the building envelope for improving its seismic safety and the energy quality. Indeed, non-integrated interventions are more expensive and less efficient.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 257
Author(s):  
Clara Camarasa ◽  
Lokesh Kumar Kalahasthi ◽  
Ivan Sanchez-Díaz ◽  
Leonardo Rosado ◽  
Lena Hennes ◽  
...  

Cross-country evidence on the adoption of energy-efficient retrofit measures (EERMs) in residential buildings is critical to supporting the development of national and pan-European policies aimed at fostering the energy performance upgrade of the building stock. In this light, the aim of this paper is to advance in the understanding of the probability of certain EERMs taking place in eight EU countries, according to a set of parameters, such as building typology, project types, and motivation behind the project. Using these parameters collected via a multi-country online survey, a set of discrete-choice (conditional logit) models are estimated on the probability of selecting a choice of any combination of 33 EERMs across the sampled countries. Results show that actions related to the building envelope are the most often-addressed across countries and single building elements or technology measures have a higher probability of being implemented. The modelling framework developed in this study contributes to the scientific community in three ways: (1) establishing an empirical relationship among EERMs and project (i.e., retrofit and deep retrofit), (2) identifying commonalities and differences across the selected countries, and (3) quantifying the probabilities and market shares of various EERMs.


Author(s):  
C. Hachem ◽  
R. Beckett

This paper presents a methodology to optimize building envelope energy performance for multi-storey residential buildings using a design performance model approach. Five analysis techniques, applied to a database of parametric simulation results, are proposed to derive information on various building performance features that can support early design decisions. Information may include optimal combination of design parameter values to achieve lowest energy consumption, or the relative impact of design parameters on a given design, such as a base case. A workflow template is established to provide support for the design process of energy efficient multi-storey residential buildings. This template can form a basis for the development of an interactive tool that integrates energy performance principles into early stage design decisions. The application of this methodology to a building in Vancouver (BC, Canada, 49°N) is presented as a case study. Results of this application demonstrates that adopting a specific combination of building envelope parameters, thermal load can be reduced by up to 85% as compared to a base case designed according to commonly built apartment buildings in the studied location.  


2021 ◽  
Vol 312 ◽  
pp. 02013
Author(s):  
Giada Romano ◽  
Francesco Mancini

According to the European Renovation Wave, the European building stock is obsolete and changes very slowly: more than 220 million housing units and 85-95% of the existing buildings will still be in use in 2050 and are absolutely not energy efficient. To cut emissions by 55% by 2030, the EU should reduce greenhouse gas emissions from buildings by 60%, their final energy consumption by 14% and energy consumption for heating and cooling by 18%. It is therefore urgent for the EU to focus on making buildings more energy efficient, less carbon intensive throughout their life cycle and more sustainable. From this framework comes the need for an adaptation not only of residential buildings but also of hotel facilities, which, on a national scale, make up about 45% of the accommodation facilities. In particular, the offer of accommodation facilities must be constantly adequate and the structures must be upgraded so that they always remain usable and comply with current regulations from the accessibility, seismic-structural and energy point of view. In this research, four hotels located in the historic centre of Rome have been analysed as case studies. Starting from an analysis of the current state, a series of interventions on the building envelope and systems have been studied, evaluating energy savings and the reduction of polluting emissions. With regard to the systems, the total electrification of the heating and domestic hot water preparation systems has been hypothesised, with the introduction of storage systems, also in view of participation in Demand Response programs.


2021 ◽  
Author(s):  
Abdulrahman Almufarrej ◽  
Tohid Erfani

<p>Increasing buildings energy efficiency is a challenging task. The two main contributing factors that control the overall buildings energy performance are the Heating Ventilation & Air Conditioning (HVAC) system and the building envelope design. Our research investigates how three main building envelop design factors (orientation, compactness and window to wall ratio) impact the overall building’s energy consumption. We focus on typical rectangular shaped buildings and vary the geometry between a square to a rectangular floor plan to provide a basis of energy performance in early stage building design guidance. We test the analysis on building’s energy performance specific to the Middle East’s Kuwait climate condition and environment, and discuss the least energy consumption patterns. This is of importance as most of the electricity consumption in Kuwait are due to HVAC use in residential buildings. The major energy consumption factors are broken down to show how the patterns are unique compared to the previously researched efforts and how a regional set of guidance is of need. The results of this study’s implication on energy and resource use in the Gulf Cooperation Council (GCC) region is discussed, given the high proportion of GHG emission compared to the population within the region.</p>


2016 ◽  
Vol 78 ◽  
pp. 73-82 ◽  
Author(s):  
F.G. Scrimgeour

This paper provides a stocktake of the status of hill country farming in New Zealand and addresses the challenges which will determine its future state and performance. It arises out of the Hill Country Symposium, held in Rotorua, New Zealand, 12-13 April 2016. This paper surveys people, policy, business and change, farming systems for hill country, soil nutrients and the environment, plants for hill country, animals, animal feeding and productivity, and strategies for achieving sustainable outcomes in the hill country. This paper concludes by identifying approaches to: support current and future hill country farmers and service providers, to effectively and efficiently deal with change; link hill farming businesses to effective value chains and new markets to achieve sufficient and stable profitability; reward farmers for the careful management of natural resources on their farm; ensure that new technologies which improve the efficient use of input resources are developed; and strategies to achieve vibrant rural communities which strengthen hill country farming businesses and their service providers. Keywords: farming systems, hill country, people, policy, productivity, profitability, sustainability


Sign in / Sign up

Export Citation Format

Share Document