scholarly journals Seismic Fragility Functions for Non-Seismically Designed RC Structures Considering Pounding Effects

Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 665
Author(s):  
Hossameldeen Mohamed ◽  
Xavier Romão

The proposed study develops fragility functions for non-seismically designed reinforced concrete structures considering different pounding configurations. The study addresses an existing research gap, since large-scale seismic risk assessment studies involving the seismic performance assessment of building portfolios usually do not involve fragility functions accounting for the possibility of pounding. The selected structures include configurations involving different separation distance values and exhibiting floor-to-floor pounding, floor-to-column pounding, pounding between structures with a significant height difference, and pounding between structures with a significant mass difference. The behaviour of these pounding configurations was analysed using incremental dynamic analysis and compared with that of the corresponding control cases (i.e., individual structures with no interaction with other structures). The results indicate the type of failure mechanism that contributes to the global collapse of the different configurations and the influence of the separation distance. Results highlight the main differences between the expected performance of different pounding configurations with respect to the occurrence of the failure mechanism that governs their collapse. Finally, results indicate that large-scale seismic risk assessment studies should consider fragility functions accounting for different pounding configurations when the possibility of pounding is not negligible, except in cases involving floor-to-floor pounding.

2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Naveed Ahmad ◽  
Qaisar Ali ◽  
Muhammad Adil ◽  
Akhtar Naeem Khan

The paper presents the development of a nonlinear static displacement-based methodology for seismic risk assessment and loss estimation of stone masonry building stock of Pakistan. Experimental investigation of one-third scaled model, tested on shake table, is performed in order to obtain lateral strength and drift limits for stone masonry and develop damage scale for performance-based assessment. Prototype buildings are designed respecting the existing building stock and investigated through nonlinear static and dynamic time history analyses. Nonlinear static mechanical models, for both global and local vulnerabilities, are developed for the considered typology which are used to derive analytical structure-dependent fragility functions considering expected sources of uncertainties explicitly in contrary to the conventional procedures. Furthermore, seismic risk assessment is performed for different scenario earthquakes and presented in terms of structure-independent fragility functions to estimate the mean damage ratio, the repair cost as a fraction of replacement cost, and casualties, with the dispersion being quantified, given source-to-site distance and magnitude for an earthquake event. The methodology is tested for seismic risk assessment of the considered typology in recent 2005 Kashmir earthquake, which is reasonably predicted. Future development of the methodology is required with additional experimental tests on rubble stone masonry material in order to increase confidence in future applications.


2019 ◽  
Vol 1 (Special Issue on First SACEE'19) ◽  
pp. 55-75
Author(s):  
Fabio Sabetta

In this paper, the main features of the policies adopted in Italy for seismic risk reduction are discussed. Particular attention is given to the Pre-disaster prevention activities such as the implementation of the building code, the seismic risk assessment for a priority scale of intervention, tax incentives and public funding for the vulnerability reduction of the existing buildings, information to population and school education, technical training of experts. The phases of response and post-disaster activities, including emergency management, search and rescue, loss scenarios, and safety assessment of buildings, are also discussed taking example from the most recent devastating earthquakes in Italy (L.Aquila 2009, Amatrice 2016).


2011 ◽  
Vol 05 (01) ◽  
pp. 31-45 ◽  
Author(s):  
T. IMAI ◽  
S. WADA ◽  
T. KOIKE

In order to keep the existing lifeline network system at a favorable seismic performance level, it is necessary to carry out retrofitting activities. This study proposes a seismic risk assessment method for the existing deteriorated lifeline network system based on the probability of system performance failure. Numerical simulations are carried out for the existing water distribution network system for several seismic investment strategies to support the decision making of seismic disaster mitigation planning. Effective planning of seismic retrofitting activities and disaster mitigation for the existing lifeline system can be realized using the newly developed assessment method.


Sign in / Sign up

Export Citation Format

Share Document