scholarly journals A Retrospective Dosimetric Study of Radiotherapy Patients with Left-Sided Breast Cancer; Patient Selection Criteria for Deep Inspiration Breath Hold Technique

Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 259 ◽  
Author(s):  
Mikaela Dell’Oro ◽  
Eileen Giles ◽  
Amy Sharkey ◽  
Martin Borg ◽  
Caroline Connell ◽  
...  

Background: Several studies have investigated cardiac dose reduction when utilizing the deep inspiration breath hold (DIBH) technique in patients undergoing radiotherapy for left-sided breast cancer. This paper aims to recommend potential selection criteria based on a retrospective single institute study of free breathing (FB) and DIBH computed tomography (CT) simulation planning scans. Methods: Dosimetric comparisons were performed retrospectively for 20 patients correlating the dose reduction and patient anatomical factors (anatomical variation of chest shape, chest wall separation, total lung volume (TLV) and others). Results: Paired t-tests demonstrated significant cardiac dose reduction for most patients but not all. Minimal cardiac dose reduction was observed for three patients using their DIBH plan, with one patient receiving a higher dose. Linear regression analysis identified a positive correlation between the patient’s TLV (on the FB CT simulation scan) and the magnitude of dosimetric benefit received (0.4045 R2). Conclusion: The TLV measured on a FB plan could potentially be utilised to predict cardiac exposure and assist with patient selection for DIBH. This is important in resource allocation, as DIBH may be unnecessarily recommended for some patients with little dosimetric benefit.

2018 ◽  
Vol 52 (1) ◽  
pp. 112-120 ◽  
Author(s):  
Noora Al-Hammadi ◽  
Palmira Caparrotti ◽  
Carole Naim ◽  
Jillian Hayes ◽  
Katherine Rebecca Benson ◽  
...  

Abstract Background During radiotherapy of left-sided breast cancer, parts of the heart are irradiated, which may lead to late toxicity. We report on the experience of single institution with cardiac-sparing radiotherapy using voluntary deep inspiration breath hold (V-DIBH) and compare its dosimetric outcome with free breathing (FB) technique. Patients and methods Left-sided breast cancer patients, treated at our department with postoperative radiotherapy of breast/chest wall +/– regional lymph nodes between May 2015 and January 2017, were considered for inclusion. FB-computed tomography (CT) was obtained and dose-planning performed. Cases with cardiac V25Gy ≥ 5% or risk factors for heart disease were coached for V-DIBH. Compliant patients were included. They underwent additional CT in V-DIBH for planning, followed by V-DIBH radiotherapy. Dose volume histogram parameters for heart, lung and optimized planning target volume (OPTV) were compared between FB and BH. Treatment setup shifts and systematic and random errors for V-DIBH technique were compared with FB historic control. Results Sixty-three patients were considered for V-DIBH. Nine (14.3%) were non-compliant at coaching, leaving 54 cases for analysis. When compared with FB, V-DIBH resulted in a significant reduction of mean cardiac dose from 6.1 +/– 2.5 to 3.2 +/– 1.4 Gy (p < 0.001), maximum cardiac dose from 51.1 +/– 1.4 to 48.5 +/– 6.8 Gy (p = 0.005) and cardiac V25Gy from 8.5 +/– 4.2 to 3.2 +/– 2.5% (p < 0.001). Heart volumes receiving low (10–20 Gy) and high (30–50 Gy) doses were also significantly reduced. Mean dose to the left anterior coronary artery was 23.0 (+/– 6.7) Gy and 14.8 (+/– 7.6) Gy on FB and V-DIBH, respectively (p < 0.001). Differences between FB- and V-DIBH-derived mean lung dose (11.3 +/– 3.2 vs. 10.6 +/– 2.6 Gy), lung V20Gy (20.5 +/– 7 vs. 19.5 +/– 5.1 Gy) and V95% for the OPTV (95.6 +/– 4.1 vs. 95.2 +/– 6.3%) were non-significant. V-DIBH-derived mean shifts for initial patient setup were ≤ 2.7 mm. Random and systematic errors were ≤ 2.1 mm. These results did not differ significantly from historic FB controls. Conclusions When compared with FB, V-DIBH demonstrated high setup accuracy and enabled significant reduction of cardiac doses without compromising the target volume coverage. Differences in lung doses were non-significant.


Author(s):  
Anh Phuong Le

TÓM TẮT Đối với ung thư vú (UTV) xạ trị là điều trị bổ túc cần thiết giúp giảm tái phát tại chỗ tại vùng, gia tăng sống còn. Tuy nhiên, xạ trị có tác dụng phụ lên tim mạch nhất là với UTV trái. Nhiều nghiên cứu đã chứng minh biến chứng và tử vong do tim mạch tăng tỉ lệ thuận với liều trung bình lên tim. Các kỹ thuật xạ trị mới trong xạ trị ung thư vú trái giúp tối ưu hóa liều vào thể tích xạ và bảo vệ tốt hơn cơ quan lành, càng đòi hỏi độ chính xác cao khi đặt bệnh. Các sai số do thiết bị hoặc đặt bệnh sẽ dẫn đến nguy cơ quá liều dung nạp hoặc thiếu liều và có nguy cơ tái phát. Vì vậy, xạ trị đòi hỏi sự chính xác cao trong suốt quá trình từ mô phỏng đến lập kế hoạch và tiến hành xạ trị. Xạ trị ung thư vú trái phối hợp hít sâu nín thở (DIBH - Deep Inspiration Breath - hold) và hệ thống quản lý bề mặt quang học (OSMS - Optical Surface Management System) làm cho tim di chuyển ra xa hơn khỏi vú, thành ngực trong quá trình xạ trị, giúp giảm liều tim một cách rõ rệt, vẫn đảm bảo được liều xạ lên thể tích đích. Ưu điểm của OSMS ngoài áp dụng cho đặt bệnh nhanh không cần xăm dấu trên da còn giám sát thời gian thực trong toàn bộ quá trình điều trị. Khi nhịp thở của bệnh nhân vượt quá một ngưỡng nhất định (0,3cm) chùm tia bức xạ sẽ bị tắt để ngăn ngừa độc tính. Do đó, hiểu và nắm rõ lợi ích quy trình đặt bệnh giúp đạt mục tiêu điều trị đồng thời giảm thời gian đặt bệnh để người bệnh có tâm lý thoải mái hơn, giảm áp lực về số lượng bệnh, nhất là đối với các trung tâm xạ trị lớn. ABSTRACT BENEFITS OF LEFT BREAST CANCER RADIATION COMBINATION OF DEEP INSPIRATION BREATH - HOLD AND OPTICAL SURFACE MANAGEMENT SYSTEM OF TRUEBEAM MACHINE AT CANCER HOSPITAL HO CHI MINH CITY Background: For breast cancer, radiation therapy is an essential adjuvant treatment to help reduce local recurrence and increase survival. However, radiation therapy has adverse effects on the cardiovascular systemespecially for left breast cancer. Several studies have demonstrated that cardiovascular morbidity and mortality increase in proportion to the mean cardiac dose. New radiotherapy techniques in radiation therapy for left breast cancer help optimize dose to radiation volume and better protect healthy organs, which requires high accuracy when patient set - up. Errors due to equipment or patient set - up will lead to the risk of overdosage or underdosage and risk of relapse. Therefore, radiation therapy requires high precision throughout the process from simulation to planning and conducting radiation therapy. Radiation therapy for left breast cancer combined with Deep Inspiration Breath - hold (DIBH) and Optical Surface Management System (OSMS)causes the heart to move further away from the breast and chest wall during radiation therapy, helping to reduce the cardiac dose significantly, still ensuring the radiation dose to the target volume. The advantage of OSMS is that in addition to being applied for fastpatient set - up, without tattooing on the skin, it also provides real - time monitoring during the entire treatment process. When the patient’s breathing rate exceeds a certain threshold (0,3cm) the radiation beam is turned off to prevent toxicity. Therefore, understanding and understanding the benefits of patient set - up helps to achieve treatment goals, while reducing patient set - up time for more comfort, reducing pressure on the number of patients, especially for patients large radiotherapy center. Keyword: Radiation therapy for left breast cancer, Deep Inspiration Breath - hold, Optical Surface Management System, cardiovascular risk.


2011 ◽  
Vol 99 ◽  
pp. S452
Author(s):  
M.H. Hansen ◽  
I.W. Ormberg ◽  
M.H. Jahr ◽  
Loe ◽  
A. Andersen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document