scholarly journals Spironolactone, a Classic Potassium-Sparing Diuretic, Reduces Survivin Expression and Chemosensitizes Cancer Cells to Non-DNA-Damaging Anticancer Drugs

Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1550 ◽  
Author(s):  
Tomomi Sanomachi ◽  
Shuhei Suzuki ◽  
Keita Togashi ◽  
Asuka Sugai ◽  
Shizuka Seino ◽  
...  

Spironolactone, a classical diuretic drug, is used to treat tumor-associated complications in cancer patients. Spironolactone was recently reported to exert anti-cancer effects by suppressing DNA damage repair. However, it currently remains unclear whether spironolactone exerts combinational effects with non-DNA-damaging anti-cancer drugs, such as gemcitabine and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Using the cancer cells of lung cancer, pancreatic cancer, and glioblastoma, the combinational effects of spironolactone with gemcitabine and osimertinib, a third-generation EGFR-TKI, were examined in vitro with cell viability assays. To elucidate the underlying mechanisms, we investigated alterations induced in survivin, an anti-apoptotic protein, by spironolactone as well as the chemosensitization effects of the suppression of survivin by YM155, an inhibitor of survivin, and siRNA. We also examined the combinational effects in a mouse xenograft model. The results obtained revealed that spironolactone augmented cell death and the suppression of cell growth by gemcitabine and osimertinib. Spironolactone also reduced the expression of survivin in these cells, and the pharmacological and genetic suppression of survivin sensitized cells to gemcitabine and osimertinib. This combination also significantly suppressed tumor growth without apparent adverse effects in vivo. In conclusion, spironolactone is a safe candidate drug that exerts anti-cancer effects in combination with non-DNA-damaging drugs, such as gemcitabine and osimertinib, most likely through the suppression of survivin.

TECHNOLOGY ◽  
2016 ◽  
Vol 04 (01) ◽  
pp. 60-69 ◽  
Author(s):  
Charles C. Sharkey ◽  
Jiahe Li ◽  
Sweta Roy ◽  
Qianhui Wu ◽  
Michael R. King

This study outlines a drug delivery mechanism that utilizes two independent vehicles, allowing for delivery of chemically and physically distinct agents. The mechanism was utilized to deliver a new anti-cancer combination therapy consisting of piperlongumine (PL) and TRAIL to treat PC3 prostate cancer and HCT116 colon cancer cells. PL, a small-molecule hydrophobic drug, was encapsulated in poly (lactic-co-glycolic acid) (PLGA) nanoparticles. TRAIL was chemically conjugated to the surface of liposomes. PL was first administered to sensitize cancer cells to the effects of TRAIL. PC3 and HCT116 cells had lower survival rates in vitro after receiving the dual nanoparticle therapy compared to each agent individually. In vivo testing involved a subcutaneous mouse xenograft model using NOD-SCID gamma mice and HCT116 cells. Two treatment cycles were administered over 48 hours. Higher apoptotic rates were observed for HCT116 tumor cells that received the dual nanoparticle therapy compared to individual stages of the nanoparticle therapy alone.


Dose-Response ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 155932582110012
Author(s):  
Wenjie Su ◽  
Lianfu Zeng ◽  
Weida Chen

Moscatilin, a natural compound isolated from the orchid Dendrobium moscatum, has multiple pharmacological actions. The present study investigated the anti-tumor role of moscatilin in breast cancer and elucidated the underlying mechanisms. Cell proliferation, viability, and apoptosis of moscatilin treated MDA-MB-231 cells were determined by CCK-8 assay and flow cytometry. Histone deacetylases (HDACs) expression levels and global acetylated status of breast cancer cells were detected by Western blot and qPCR. Mouse xenograft model was established to evaluate the anti-cancer effects of moscatilin. Moscatilin treatment dose dependently suppressed proliferation and increased apoptosis of breast cancer cells. Moreover, moscatilin administration dramatically repressed tumor growth and extended survival time of mouse model. Mechanistically, moscatilin down-regulated HDAC3 expression, and then enhanced the global acetylated status of histone H3 (H3K9Ac) and H4 (H4K16Ac). Our findings indicate that moscatilin can inhibit the proliferation and promote apoptosis of breast cancer in vitro and in vivo, which suggests that moscatilin can be used as a potential therapeutic agent for the treatment of breast cancer.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 8577-8577
Author(s):  
Reety Arora ◽  
Masahiro Shuda ◽  
Anna Guastafierro ◽  
Tuna Toptan ◽  
Yanis Tolstov ◽  
...  

8577 Background: MCC is an aggressive, chemoresistant skin cancer causing more deaths each year than chronic myelogenous leukemia. We discovered a new virus, Merkel cell polyomavirus (MCV), clonally integrated into ~80% of primary and metastatic MCC in 2008. To find therapeutic targets for this cancer, we examined cellular genes perturbed by MCV infection. Methods: Digital transcriptome subtraction was used to discover MCV and also to reveal survivin gene (BIRC5) upregulation in virus-positive tumors. MCV T antigen knockdown studies in seven MCC lines and large T (LT) transduction into BJ fibroblasts were used to confirm this. Drug screening was performed in vitro using Cell-Titer Glo assays in a two stage analysis. In vivo screening used an MKL-1 (MCV+) MCC NOD-SCIDg mouse xenograft model with a single three-week treatment round. Results: MCV large T oncoprotein induces survivin transcription through retinoblastoma protein sequestration by the LT LXCXE motif. MCV T antigen knockdown results in nonapoptotic MCC cell death and loss of survivin expression. YM155, a phase II survivin transcription inhibitor, causes MCV+ MCC cell necroptosis associated with autophagy at 1-12 nM EC50. Of 1359 other drugs from LOPAC and NCI Oncology Set II libraries, only bortezomib had in vitro potency comparable to YM155. In MKL-1 xenograft studies, mice were treated with saline, bortezomib or YM155 for three weeks using standard dosings. Bortezomib did not significantly improve mouse survival (33%) over saline (24%) during treatment. In contrast, all YM155-treated mice survived (100%, p<0.001) the 3 week treatment period. Tumors resumed growth once YM155 treatment was stopped suggesting that YM155 is cytostatic in vivo rather than cytotoxic. Conclusions: Survivin expression is induced by MCV LT and is critical to MCV+ MCC survival. A survivin inhibitor, YM155 was nontoxic to mice and cytostatic for MCV+ MCC xenografts. Using genomic technologies, in less than four years, the primary viral cause for most MCC was discovered, new diagnostic tests developed and a promising rational drug candidate identified. A cooperative group trial (E1611) for YM155 and bortezomib in MCC patients is currently planned.


2015 ◽  
Vol 33 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Justyna Mikuła-Pietrasik ◽  
Patrycja Sosińska ◽  
Eryk Naumowicz ◽  
Konstantin Maksin ◽  
Hanna Piotrowska ◽  
...  

Oncogenesis ◽  
2017 ◽  
Vol 6 (5) ◽  
pp. e343-e343 ◽  
Author(s):  
Y Zhao ◽  
A Wei ◽  
H Zhang ◽  
X Chen ◽  
L Wang ◽  
...  

Abstract Abnormal sialylation due to overexpression of sialyltransferases has been associated with tumorigenesis and tumor progression. Although ST6Gal-I influences cancer persistence and progression by affecting various receptors, the underlying mechanisms and mediators remain largely obscure, especially in hepatocellular carcinoma (HCC). We found that ST6Gal-I expression was markedly upregulated in HCC tissues and cells, high levels being associated with aggressive phenotype and poor prognosis. Furthermore, we examined the roles and mechanisms of ST6Gal-I in HCC tumorigenesis and metastasis in vitro and in vivo. ST6Gal-I overexpression promoted proliferation, migration and invasion of Huh-7 cells, whereas its knockdown restricted these abilities in MHCC97-H cells. Additionally, in a mouse xenograft model, ST6Gal-I-knockdown MHCC97-H cells formed significantly smaller tumors, implying that ST6Gal-I overexpression can induce HCC cell malignant transformation. Importantly, enhanced HCC tumorigenesis and metastasis by ST6Gal-I may be associated with Wnt/β-catenin signaling promotion, including β-catenin nuclear transition and upregulation of downstream molecules. Together, our results suggest a role for ST6Gal-I in promoting the growth and invasion of HCC cells through the modulation of Wnt/β-catenin signaling molecules, and that ST6Gal-I might be a promising marker for prognosis and therapy of HCC.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2495 ◽  
Author(s):  
Maram Hussein Zahra ◽  
Tarek A.R. Salem ◽  
Bishoy El-Aarag ◽  
Nermeen Yosri ◽  
Samah EL-Ghlban ◽  
...  

Background/Aim: Plants play an important role in anti-cancer drug discovery, therefore, the current study aimed to evaluate the biological activity of Alpinia zerumbet (A. zerumbet) flowers. Methods: The phytochemical and biological criteria of A. zerumbet were in vitro investigated as well as in mouse xenograft model. Results: A. zerumbet extracts, specially CH2Cl2 and MeOH extracts, exhibited the highest potent anti-tumor activity against Ehrlich ascites carcinoma (EAC) cells. The most active CH2Cl2 extract was subjected to bioassay-guided fractionation leading to isolatation of the naturally occurring 5,6-dehydrokawain (DK) which was characterized by IR, MS, 1H-NMR and 13C-NMR. A. zerumbet extracts, specially MeOH and CH2Cl2 extracts, exhibited significant inhibitory activity towards tumor volume (TV). Furthermore, A. zerumbet extracts declined the high level of malonaldehyde (MDA) as well as elevated the levels of superoxide dismutase (SOD) and catalase (CAT) in liver tissue homogenate. Moreover, DK showed anti-proliferative action on different human cancer cell lines. The recorded IC50 values against breast carcinoma (MCF-7), liver carcinoma (Hep-G2) and larynx carcinoma cells (HEP-2) were 3.08, 6.8, and 8.7 µg/mL, respectively. Conclusion: Taken together, these findings open the door for further investigations in order to explore the potential medicinal properties of A. zerumbet.


2018 ◽  
Vol 414 ◽  
pp. 88-98 ◽  
Author(s):  
Wang-Qing Liu ◽  
Yves Lepelletier ◽  
Matthieu Montès ◽  
Lucia Borriello ◽  
Rafika Jarray ◽  
...  

2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Sign in / Sign up

Export Citation Format

Share Document