scholarly journals Metabolic Effects of Recurrent Genetic Aberrations in Multiple Myeloma

Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 396
Author(s):  
Timon A. Bloedjes ◽  
Guus de Wilde ◽  
Jeroen E. J. Guikema

Oncogene activation and malignant transformation exerts energetic, biosynthetic and redox demands on cancer cells due to increased proliferation, cell growth and tumor microenvironment adaptation. As such, altered metabolism is a hallmark of cancer, which is characterized by the reprogramming of multiple metabolic pathways. Multiple myeloma (MM) is a genetically heterogeneous disease that arises from terminally differentiated B cells. MM is characterized by reciprocal chromosomal translocations that often involve the immunoglobulin loci and a restricted set of partner loci, and complex chromosomal rearrangements that are associated with disease progression. Recurrent chromosomal aberrations in MM result in the aberrant expression of MYC, cyclin D1, FGFR3/MMSET and MAF/MAFB. In recent years, the intricate mechanisms that drive cancer cell metabolism and the many metabolic functions of the aforementioned MM-associated oncogenes have been investigated. Here, we discuss the metabolic consequences of recurrent chromosomal translocations in MM and provide a framework for the identification of metabolic changes that characterize MM cells.

2019 ◽  
Vol 76 ◽  
pp. 58-64 ◽  
Author(s):  
Gurvinder Kaur ◽  
Ritu Gupta ◽  
Nitin Mathur ◽  
Lata Rani ◽  
Lalit Kumar ◽  
...  

2019 ◽  
Author(s):  
Satomi Mitsuhashi ◽  
Sachiko Ohori ◽  
Kazutaka Katoh ◽  
Martin C Frith ◽  
Naomichi Matsumoto

AbstractMany genetic/genomic disorders are caused by genomic rearrangements. Standard methods can often characterize these variations only partly, e.g. copy number changes. We describe full characterization of complex chromosomal rearrangements, based on whole-genome-coverage sequencing of long DNA reads from four patients with chromosomal translocations. We developed a new analysis pipeline, which filters out rearrangements seen in humans without the same disease, reducing the number of loci per patient from a few thousand to a few dozen. For one patient with two reciprocal chromosomal translocations, we find that the translocation points have complex rearrangements of multiple DNA fragments involving 5 chromosomes, which we could order and orient by an automatic algorithm, thereby fully reconstructing the rearrangement. Some important properties of these rearrangements, such as sequence loss, are holistic: they cannot be inferred from any part of the rearrangement, but only from the fully-reconstructed rearrangement. In this patient, the rearrangements were evidently caused by shattering of the chromosomes into multiple fragments, which rejoined in a different order and orientation with loss of some fragments. Our approach promises to fully characterize many congenital germline rearrangements, provided they do not involve poorly-understood loci such as centromeric repeats.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 619 ◽  
Author(s):  
Hannah Sanford-Crane ◽  
Jaime Abrego ◽  
Mara H. Sherman

Fibroblast activation is an accompanying feature of solid tumor progression, resembling a conserved host response to tissue damage. Cancer-associated fibroblasts (CAFs) comprise a heterogeneous and plastic population with increasingly appreciated roles in tumor growth, metastatic capacity, and response to therapy. Classical features of fibroblasts in a wound-healing response, including profound extracellular matrix production and cytokine release, are recapitulated in cancer. Emerging evidence suggests that fibroblastic cells in the microenvironments of solid tumors also critically modulate cellular metabolism in the neoplastic compartment through mechanisms including paracrine transfer of metabolites or non-cell-autonomous regulation of metabolic signaling pathways. These metabolic functions may represent common mechanisms by which fibroblasts stimulate growth of the regenerating epithelium during a wound-healing reaction, or may reflect unique co-evolution of cancer cells and surrounding stroma within the tumor microenvironment. Here we review the recent literature supporting an important role for CAFs in regulation of cancer cell metabolism, and relevant pathways that may serve as targets for therapeutic intervention.


2021 ◽  
Vol 35 (3) ◽  
Author(s):  
Pegah Abdollahi ◽  
Esten N. Vandsemb ◽  
Samah Elsaadi ◽  
Lisa M. Røst ◽  
Rui Yang ◽  
...  

2021 ◽  
Vol 22 (14) ◽  
pp. 7281
Author(s):  
Benoit R. Gauthier ◽  
Valentine Comaills

The dynamic nature of the nuclear envelope (NE) is often underestimated. The NE protects, regulates, and organizes the eukaryote genome and adapts to epigenetic changes and to its environment. The NE morphology is characterized by a wide range of diversity and abnormality such as invagination and blebbing, and it is a diagnostic factor for pathologies such as cancer. Recently, the micronuclei, a small nucleus that contains a full chromosome or a fragment thereof, has gained much attention. The NE of micronuclei is prone to collapse, leading to DNA release into the cytoplasm with consequences ranging from the activation of the cGAS/STING pathway, an innate immune response, to the creation of chromosomal instability. The discovery of those mechanisms has revolutionized the understanding of some inflammation-related diseases and the origin of complex chromosomal rearrangements, as observed during the initiation of tumorigenesis. Herein, we will highlight the complexity of the NE biology and discuss the clinical symptoms observed in NE-related diseases. The interplay between innate immunity, genomic instability, and nuclear envelope leakage could be a major focus in future years to explain a wide range of diseases and could lead to new classes of therapeutics.


2021 ◽  
Vol 22 (6) ◽  
pp. 2918
Author(s):  
Eleni Papakonstantinou ◽  
Dimitrios Vlachakis ◽  
Trias Thireou ◽  
Panayiotis G. Vlachoyiannopoulos ◽  
Elias Eliopoulos

Monocarboxylate transporters (MCTs) are of great research interest for their role in cancer cell metabolism and their potential ability to transport pharmacologically relevant compounds across the membrane. Each member of the MCT family could potentially provide novel therapeutic approaches to various diseases. The major differences among MCTs are related to each of their specific metabolic roles, their relative substrate and inhibitor affinities, the regulation of their expression, their intracellular localization, and their tissue distribution. MCT4 is the main mediator for the efflux of L-lactate produced in the cell. Thus, MCT4 maintains the glycolytic phenotype of the cancer cell by supplying the molecular resources for tumor cell proliferation and promotes the acidification of the extracellular microenvironment from the co-transport of protons. A promising therapeutic strategy in anti-cancer drug design is the selective inhibition of MCT4 for the glycolytic suppression of solid tumors. A small number of studies indicate molecules for dual inhibition of MCT1 and MCT4; however, no selective inhibitor with high-affinity for MCT4 has been identified. In this study, we attempt to approach the structural characteristics of MCT4 through an in silico pipeline for molecular modelling and pharmacophore elucidation towards the identification of specific inhibitors as a novel anti-cancer strategy.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Renjie Dou ◽  
Jinjun Qian ◽  
Wei Wu ◽  
Yanxin Zhang ◽  
Yuxia Yuan ◽  
...  

AbstractSteroid 5α-reductase type I (SRD5A1) is a validated oncogene in many sex hormone-related cancers, but its role in multiple myeloma (MM) remains unknown. Based on gene expression profiling (GEP) of sequential MM samples during the disease course, we found that the aberrant expression of SRD5A1 was correlated with progression and poor prognosis in MM patients. In this study, the oncogenic roles of SRD5A1 were validated in human MM cell lines (ARP1 and H929) and the xenograft MM model as well as the 5TMM mouse model. MTT and flow cytometry were used to assess MM cell proliferation, cell cycle, and apoptosis post inducible knockdown SRD5A1 by lentivirus-mediated short-hairpin RNA (shRNA). Transcriptomic sequencing, immunofluorescence, and western blot were used to investigate the effects of SRD5A1 suppression on cell apoptosis and autophagy. Mechanistically, SRD5A1 downregulation simultaneously regulated both the Bcl-2 family protein-mediated apoptosis and the autophagic process via PI3K/Akt/mTOR signaling pathway in MM cells. Meanwhile, the autophagy inhibitor (3-methyladenine) and SRD5A1 inhibitor (Dutasteride) were utilized to evaluate their anti-myeloma effect. Thus, our results demonstrated that SRD5A1 downregulation simultaneously regulated both the apoptosis and the autophagic process in MM cells. The dual autophagy–apoptosis regulatory SRD5A1 may serve as a biomarker and potential target for MM progression and prognosis.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 939
Author(s):  
Marcelo Ehrlich ◽  
Eran Bacharach

Cell autonomous immunity genes mediate the multiple stages of anti-viral defenses, including recognition of invading pathogens, inhibition of viral replication, reprogramming of cellular metabolism, programmed-cell-death, paracrine induction of antiviral state, and activation of immunostimulatory inflammation. In tumor development and/or immunotherapy settings, selective pressure applied by the immune system results in tumor immunoediting, a reduction in the immunostimulatory potential of the cancer cell. This editing process comprises the reduced expression and/or function of cell autonomous immunity genes, allowing for immune-evasion of the tumor while concomitantly attenuating anti-viral defenses. Combined with the oncogene-enhanced anabolic nature of cancer-cell metabolism, this attenuation of antiviral defenses contributes to viral replication and to the selectivity of oncolytic viruses (OVs) towards malignant cells. Here, we review the manners by which oncogene-mediated transformation and tumor immunoediting combine to alter the intracellular milieu of tumor cells, for the benefit of OV replication. We also explore the functional connection between oncogenic signaling and epigenetic silencing, and the way by which restriction of such silencing results in immune activation. Together, the picture that emerges is one in which OVs and epigenetic modifiers are part of a growing therapeutic toolbox that employs activation of anti-tumor immunity for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document