scholarly journals Lensoside Aβ as an Adjuvant to the Anti-Glioma Potential of Sorafenib

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2637
Author(s):  
Aleksandra Maciejczyk ◽  
Justyna Kapral-Piotrowska ◽  
Joanna Sumorek-Wiadro ◽  
Adrian Zając ◽  
Ewa Grela ◽  
...  

Aim: The anti-glioma effect of lensoside Aβ alone and in combination with sorafenib (pro-survival Raf kinase inhibitor) was evaluated for the first time in terms of programmed cell death induction in anaplastic astrocytoma and glioblastoma multiforme cell lines as an experimental model. Apoptosis, autophagy, and necrosis were identified microscopically (fluorescence and scanning microscopes) and confirmed by flow cytometry (mitochondrial membrane potential MMP and cell death). The expression of apoptotic (caspase 3) and autophagic markers (beclin 1) as well as Raf kinase were estimated by immunoblotting. The FTIR method was used to determine the interaction of the studied drugs with lipid and protein groups within cells, while the modes of drug action within the cells were assessed with the FLIM technique. Results: Lensoside Aβ itself does not exhibit anti-glioma activity but significantly enhances the anti-cancer potential of sorafenib, initiating mainly apoptosis of up to 90% of cells. It was correlated with an increased level of active caspase 3, a reduced MMP value, and a lower level of Raf kinase. The interaction with membrane structures led to morphological changes typical of programmed death. Conclusions: Our results indicate that lensoside Aβ plays an important role as an adjuvant in chemotherapy with sorafenib and may be a potential candidate in anti-glioma combination therapy.

2004 ◽  
Vol 32 (03) ◽  
pp. 377-387 ◽  
Author(s):  
Hyung-Jin Kim ◽  
Seon Il Jang ◽  
Young-Jun Kim ◽  
Hyun-Ock Pae ◽  
Hae-Young Won ◽  
...  

We studied the effect of 4-acetyl-12,13-epoxyl-9-trichothecene-3,15-diol (AETD) isolated from Isaria japonica, one of the most popular Chinese fungal medicines, on the induction of apoptosis in rat bladder carcinoma NBT-II cells. AETD was cytotoxic to NBT-II cells, and this cytotoxic effect appears to be attributed to its induction of apoptotic cell death, as AETD induced nuclear morphological changes and internucleosomal DNA fragmentation, and increased the proportion of hypodiploid cells and activity of caspase-3. AETD treatment also decreased the expression of the anti-apoptotic protein Bcl-2 and increased the expression of the pro-apoptotic protein Bax. These results provide important information in understanding the mechanism(s) of AETD-induced apoptosis.


2018 ◽  
Vol 5 (11) ◽  
pp. 180509 ◽  
Author(s):  
Yinghua Li ◽  
Min Guo ◽  
Zhengfang Lin ◽  
Mingqi Zhao ◽  
Yu Xia ◽  
...  

The morbidity and mortality of hepatocellular carcinoma, the most common cancer, are increasing continuously worldwide. Galangin (Ga) has been demonstrated to possess anti-cancer effect, but the efficacy of Ga was limited by its low permeability and poor solubility. To develop aqueous formulation and improve the anti-cancer activity of Ga, surface decoration of functionalized selenium nanoparticles with Ga (Se@Ga) was synthesized in the present study. The aim of this study was to evaluate the anti-cancer effect of Se@Ga and the mechanism on HepG2 cells. Se@Ga-induced HepG2 cell apoptosis was confirmed by depletion of mitochondrial membrane potential, translocation of phosphatidylserine and caspase-3 activation. Furthermore, Se@Ga enhanced the anti-cancer activity of HepG2 cells through ROS-mediated AKT and p38 signalling pathways. In summary, these results suggest that Se@Ga might be potential candidate chemotherapy for cancer.


Gene ◽  
2006 ◽  
Vol 369 ◽  
pp. 134-141 ◽  
Author(s):  
Brant R. Burkhardt ◽  
Scott R. Greene ◽  
Peter White ◽  
Ryan K. Wong ◽  
John E. Brestelli ◽  
...  

2003 ◽  
Vol 284 (4) ◽  
pp. C1048-C1053 ◽  
Author(s):  
Eisuke F. Sato ◽  
Masahiro Higashino ◽  
Kazuo Ikeda ◽  
Ryotaro Wake ◽  
Mitsuyoshi Matsuo ◽  
...  

Polymorphonuclear leukocytes (PMN) play crucial roles in protecting hosts against invading microbes and in the pathogenesis of inflammatory tissue injury. Although PMN migrate into mucosal layers of digestive and respiratory tracts, only limited information is available of their fate and function in situ. We previously reported that, unlike circulating PMN (CPMN), PMN in the oral cavity spontaneously generate superoxide radical and nitric oxide (NO) in the absence of any stimuli. When cultured for 12 h under physiological conditions, oral PMN (OPMN) showed morphological changes that are characteristic of those of apoptosis. Upon agarose gel electrophoresis, nuclear DNA samples isolated from OPMN revealed ladder-like profiles characteristic of nucleosomal fragmentation.l-cysteine, reduced glutathione (GSH), and herbimycin A, a protein tyrosine kinase inhibitor, suppressed the activation of caspase-3 and apoptosis of OPMN. Neither thiourea, superoxide dismutase (SOD), nor catalase inhibited the activation of caspase-3 and apoptosis. Moreover, N-acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), inhibitor for caspase-3, inhibited the fragmentation of DNA. These results suggested that oxidative stress and/or tyrosine-kinase-dependent pathway(s) activated caspase-3 in OPMN, thereby inducing their apoptosis.


2000 ◽  
Vol 346 (3) ◽  
pp. 777-783 ◽  
Author(s):  
Frank ESSMANN ◽  
Thomas WIEDER ◽  
Albrecht OTTO ◽  
Eva-Christina MÜLLER ◽  
Bernd DÖRKEN ◽  
...  

Different cytotoxic drugs induce cell death by activating the apoptotic programme; a family of cysteinyl aspartate proteases named caspases has been shown to be involved in the initiation as well as the execution of this kind of cell death. In the present study, cleavage of D4-GDI (Rho-GDI 2), an abundant haemopoietic-cell GDP dissociation inhibitor for the Ras-related Rho family GTPases, was demonstrated after treatment of BJAB Burkitt-like lymphoma cells with taxol or epirubicin. The cleavage of D4-GDI occurred simultaneously with the activation of caspase-3 but preceded DNA fragmentation and the morphological changes associated with apoptotic cell death. By using high-resolution two-dimensional gel electrophoresis it was shown that this cleavage is specific: whereas the level of the homologous protein Rho-GDI 1 was not significantly altered during drug-induced apoptosis and in cytochrome c/dATP-activated cellular extracts, D4-GDI disappeared owing to proteolytic cleavage. Inhibitor experiments with Z-DEVD-fmk (in which Z stands for benzyloxycarbonyl and fmk for fluoromethyl ketone) and microsequencing of the D4-GDI fragment revealed that this occurs at the caspase-3 cleavage site. Our results strongly suggest the differential regulation of the homologous GDP dissociation inhibitors Rho-GDI 1 and D4-GDI during drug-induced apoptosis by proteolysis mediated by caspase-3 but not by caspase-1. Owing to their crucial role as modulators of Rho GTPases, this might in turn have a significant impact on the mechanisms that induce the cytoskeletal and morphological changes in apoptotic cells.


2002 ◽  
Vol 383 (11) ◽  
pp. 1751-1758 ◽  
Author(s):  
L. Rumora ◽  
M. Hadzija ◽  
K. Bariic ◽  
D. Maysinger ◽  
T. Zanic Grubiic

Abstract Nanomolar concentrations of human amylin promote death of RINm5F cells in a time and concentrationdependent manner. Morphological changes of chromatin integrity suggest that cells are predominantly undergoing apoptosis. Human amylin induces significant activation of caspase-3 and strong and sustained phosphorylation of stressactivated protein kinases, cJun Nterminal kinase (JNK) and p38, that precedes cell death. Extracellular signalregulated kinase (ERK) activation was not concomitant with JNK and/or p38 activation. Activation of caspase-3 and mitogenactivated protein kinases (MAPKs) was detected by Western blot analysis. Addition of the MEK1 inhibitor PD 98059 had no effect on amylininduced apoptosis, suggesting that ERK activation does not play a role in this apoptotic scenario. A correlative inhibition of JNK activation by the immunosuppressive drug FK506, as well as a selective inhibition of p38 MAPK activation by SB 203580, significantly suppressed procaspase-3 processing and the extent of amylininduced cell death. Moreover, simultaneous pretreatment with both FK506 and SB 203580, or with the caspase-3 inhibitor AcDEVDCHO alone, almost completely abolished procaspase-3 processing and cell death. Thus, our results suggest that amylininduced apoptosis proceeds through sustained activation of JNK and p38 MAPK followed by caspase-3 activation.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3483-3488 ◽  
Author(s):  
S. Celeste Posey ◽  
Maria Paola Martelli ◽  
Toshifumi Azuma ◽  
David J. Kwiatkowski ◽  
Barbara E. Bierer

Abstract The actin regulatory protein gelsolin cleaves actin filaments in a calcium- and polyphosphoinositide-dependent manner. Gelsolin has recently been described as a novel substrate of the cysteinyl protease caspase-3, an effector protease activated during apoptosis. Cleavage by caspase-3 generates an amino-terminal fragment of gelsolin that can sever actin filaments independently of calcium regulation. The disruption of the actin cytoskeleton by cleaved gelsolin is hypothesized to mediate many of the downstream morphological changes associated with apoptosis. In contrast, overexpression of full-length gelsolin has also been reported to inhibit apoptotic cell death upstream of the activation of caspase-3, suggesting that gelsolin may also act prior to commitment to cell death. The authors previously observed that actin stabilization by the cell permeant agent jasplakinolide enhanced cell death upon interleukin (IL)-2 or IL-3 withdrawal from growth-factor–dependent lymphocyte cell lines, and hypothesized that actin polymerization could alter the activity of gelsolin, thus enhancing apoptosis. Here the authors show that constitutive overexpression of gelsolin did not, however, inhibit or dramatically enhance apoptotic cell death upon growth-factor withdrawal, nor did it modify sensitivity to jasplakinolide. In contrast to previous reports, overexpression of gelsolin in Jurkat T cells did not prevent or delay apoptosis induced by Fas ligation or ceramide treatment. Overexpressed gelsolin protein was cleaved during apoptosis, as seen previously in this and other cell types. In these model systems, therefore, the level of gelsolin expression was not a rate-limiting determinant in commitment to or time to the morphological changes of apoptosis.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3110 ◽  
Author(s):  
Dinh-Chuong Pham ◽  
Yu-Chuan Chang ◽  
Shian-Ren Lin ◽  
Yuh-Ming Fuh ◽  
May-Jywan Tsai ◽  
...  

Human neuroblastoma cancer is the most typical extracranial solid tumor. Yet, new remedial treatment therapies are demanded to overcome its sluggish survival rate. Neferine, isolated from the lotus embryos, inhibits the proliferation of various cancer cells. This study aimed to evaluate the anti-cancer activity of neferine in IMR32 human neuroblastoma cells and to expose the concealable molecular mechanisms. IMR32 cells were treated with different concentrations of neferine, followed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to assess cell viability. In an effort to determine the molecular mechanisms in neferine-incubated IMR32 cells, cell cycle arrest, cell migration, and focal adhesion kinase (FAK), the 70-kDa ribosomal S6 kinase 1 (S6K1), poly (ADP-ribose) polymerase (PARP), caspase-3, Beclin-1, and microtubule-associated protein 1A/1B-light chain 3 (LC3) protein expressions were investigated. Neferine strongly disrupted the neuroblastoma cell growth via induction of G2/M phase arrest. Furthermore, neferine provoked autophagy and apoptosis in IMR32 cells, confirmed by p-FAK, and p-S6K1 reduction, LC3-II accumulation, Beclin-1 overexpression, and cleaved caspase-3/PARP improvement. Finally, neferine markedly retarded cell migration of neuroblastoma cancer cells. As a result, our findings for the first time showed an explicit anti-cancer effect of neferine in IMR32 cells, suggesting that neferine might be a potential candidate against human neuroblastoma cells to improve clinical outcomes with further in vivo investigation.


Sign in / Sign up

Export Citation Format

Share Document