scholarly journals TP53 in Biology and Treatment of Osteosarcoma

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4284
Author(s):  
Kamil Jozef Synoradzki ◽  
Ewa Bartnik ◽  
Anna M. Czarnecka ◽  
Michał Fiedorowicz ◽  
Wiktoria Firlej ◽  
...  

The TP53 gene is mutated in 50% of human tumors. Oncogenic functions of mutant TP53 maintain tumor cell proliferation and tumor growth also in osteosarcomas. We collected data on TP53 mutations in patients to indicate which are more common and describe their role in in vitro and animal models. We also describe animal models with TP53 dysfunction, which provide a good platform for testing the potential therapeutic approaches. Finally, we have indicated a whole range of pharmacological compounds that modulate the action of p53, stabilize its mutated versions or lead to its degradation, cause silencing or, on the contrary, induce the expression of its functional version in genetic therapy. Although many of the described therapies are at the preclinical testing stage, they offer hope for a change in the approach to osteosarcoma treatment based on TP53 targeting in the future.

2020 ◽  
Author(s):  
Iolanda Ferro ◽  
Jacopo Gavini ◽  
Lisamaria Bracher ◽  
Marc Landolfo ◽  
Daniel Candinas ◽  
...  

AbstractThe small non-coding vault RNA (vtRNA) 1-1 has been shown to confer apoptosis resistance in several malignant cell lines and also to modulate the autophagic flux in hepatocytes, thus highlighting its pro-survival role. Here we describe a new function of vtRNA1-1 in regulating in vitro and in vivo tumor cell proliferation, tumorigenesis and chemoresistance. By activating extracellular signal-regulated kinases (ERK 1/2), vtRNA1-1 knock-out (KO) inhibits transcription factor EB (TFEB), leading to a downregulation of the coordinated lysosomal expression and regulation (CLEAR) network genes and lysosomal compartment dysfunction. Pro-tumorigenic pathways dysregulation and decreased lysosome functionality potentiate the anticancer effect of conventional targeted cancer drugs in the absence of vtRNA1-1. Finally, vtRNA1-1 KO-reduced lysosomotropism, together with a higher intracellular compound availability, significantly reduced tumor cell proliferation in vitro and in vivo. These findings reveal the role of vtRNA1-1 in ensuring intracellular catabolic compartment stability and functionality, suggesting its importance in lysosome-mediated chemotherapy resistance.


Author(s):  
Valeria Chiono

Since its adhesion to Centro3R, Politecnico di Torino has approached 3R teaching through a new Master course, entitled “New advances in alternative preclinical trials”. This is a multidisciplinary optional course for Master students in Biomedical Engineering, with the contribution of different teachers, who are experts on different aspects of preclinical testing of biomedical devices: European Standards for preclinical experimentation; preclinical animal models; protection of animal welfare in the European legislation; the role of statistics on the application of the 3R principle; preclinical experimental models in vitro; in silico models. This contribution describes the subjects faced by the course and their importance in the context of the 3R Principle.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54361 ◽  
Author(s):  
Fatma J. Al-Saeedi ◽  
Princy M. Mathew ◽  
Yunus A. Luqmani

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4484-4484 ◽  
Author(s):  
Antonio Pierini ◽  
Lucrezia Colonna ◽  
Maite Alvarez ◽  
Dominik Schneidawind ◽  
Byung-Su Kim ◽  
...  

Adoptive transfer of CD4+CD25+FoxP3+ regulatory T cells (Tregs) prevents graft versus host disease (GvHD) in several animal models and following allogeneic hematopoietic cell transplantation (HCT) in clinical trials. In these models donor derived Tregs have been mainly used as they share the same major histocompatibility complex (MHC) with conventional CD4+ and CD8+ T cells (Tcons) that are primarily responsible for GvHD onset and persistence. Third-party derived Tregs are a promising alternative tool for cellular therapy as they can be prepared in advance, screened for pathogens and activity and banked. In this study we explored MHC disparities between Tregs and Tcons in HCT to evaluate the impact of these different cell populations in GvHD prevention and survival after transplant. Methods and Results We evaluated the ability of highly purified Treg to suppress proliferation of C57BL/6 (H-2b) Tcons following exposure to irradiated splenocytes from BALB/C (H-2d) mice in vitro in a mixed lymphocyte reaction (MLR). Either donor derived C57BL/6 (H-2b) or third party FVB (H-2q) Tregs suppressed Tcon proliferation at the Treg/Tcon ratios of 1:2 and 1:4. The same Treg population effectively suppressed different MHC derived Tcons where BALB/C (H-2d) or FVB (H-2q, third-party) Tcons were incubated with irradiated splenocytes from C57BL/6 (H-2b) mice and were effectively suppressed with BALB/C (H-2d) Tregs. In the MLR, third-party Tregs present the same activation molecule expression patterns as MHC matched Tregs: CTLA4 and LAG3 expression is enhanced after stimulation with interleukin-2 (IL-2) and anti-CD3/CD28 beads, while MHC class II molecule expression is increased after 3-4 days of culture with Tcons and irradiated splenocytes. Furthermore third-party and MHC matched Tregs express the same levels of interleukin-10 (IL-10). We translated these results to in vivo studies in animal models. In these studies T cell depleted bone marrow (TCD BM) from C57BL/6 (H-2b) mice was injected into lethally irradiated (total body irradiation, 8 Gy) BALB/C (H-2d) recipient mice. 2 days later GvHD was induced by injecting luc+ donor derived Tcons (1x106/mouse). Using this model GvHD was evaluated following the adoptive transfer of freshly isolated CD4+CD25+FoxP3+ Tregs derived from BALB/C (H-2d, host type), C57BL/6 (H-2b, donor type), FVB (H-2q, third-party) or BALB/B (H-2b, minor mismatched with the donor, major mismatched with the host) mice at the different Treg/Tcon ratios of 1:1, 1:2 and 1:4. As expected, donor Tregs exerted the strongest dose dependent GvHD protection (p = 0.028), while host Tregs did not improve mouse survival (p = 0.58). Third-party and minor mismatched with the donor Tregs improved mouse survival (third-party and minor mismatched with the donor respectively, p = 0.028 and p = 0.17) but mice had worse GvHD score profiles (both p< 0.001) and could not recover their weight as well as mice treated with donor Tregs (both p< 0.001). In vivoTcon bioluminescent imaging confirmed these results showing a reduced Tcon proliferation in mice treated with donor, third-party and minor mismatched with the donor Tregs, the first exerting the strongest effect (after 6 weeks of observation, p< 0.001). Conclusions Our studies indicate that MHC disparities between Tregs and Tcons do not represent an insurmountable barrier for Treg function. In vitro and in vivo data strongly suggest that Tregs can suppress Tcon proliferation without requiring MHC matching. In vivo GvHD prevention efficiency was affected by MHC disparities with donor derived Treg being the most effective, however, third party Treg also resulted in GvHD attenuation. These studies indicate that both donor and third party Treg could be effective in clinical application raising the possibility of screening and banking Treg for use. Further, these studies highlight the need for activation of the Treg on host tissues to effectively suppress conventional T cell proliferation and GvHD induction. Disclosures: No relevant conflicts of interest to declare.


1981 ◽  
Vol 166 (1) ◽  
pp. 107-112 ◽  
Author(s):  
P. M. Kimball ◽  
L. Hammonds ◽  
J. M. McKibbin ◽  
M. G. Brattain ◽  
G. Glover ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-23 ◽  
Author(s):  
Carl D. Richards

Oncostatin M is a secreted cytokine involved in homeostasis and in diseases involving chronic inflammation. It is a member of the gp130 family of cytokines that have pleiotropic functions in differentiation, cell proliferation, and hematopoetic, immunologic, and inflammatory networks. However, Oncostatin M also has activities novel to mediators of this cytokine family and others and may have fundamental roles in mechanisms of inflammation in pathology. Studies have explored Oncostatin M functions in cancer, bone metabolism, liver regeneration, and conditions with chronic inflammation including rheumatoid arthritis, lung and skin inflammatory disease, atherosclerosis, and cardiovascular disease. This paper will review Oncostatin M biology in a historical fashion and focus on its unique activities, in vitro and in vivo, that differentiate it from other cytokines and inspire further study or consideration in therapeutic approaches.


2021 ◽  
Vol 11 ◽  
Author(s):  
Atsushi Takatori ◽  
Shamim Hossain ◽  
Atsushi Ogura ◽  
Jesmin Akter ◽  
Yohko Nakamura ◽  
...  

Receptor tyrosine kinases (RTKs) receive different modulation before transmitting proliferative signals. We previously identified neuronal leucine-rich repeat 1 (NLRR1) as a positive regulator of EGF and IGF-1 signals in high-risk neuroblastoma cells. Here, we show that NLRR1 is up-regulated in various adult cancers and acts as a key regulator of tumor cell proliferation. In the extracellular domains of NLRR1, fibronectin type III (FNIII) domain is responsible for its function to promote cell proliferation. We generated monoclonal antibodies against the extracellular domains of NLRR1 (N1mAb) and screened the positive N1mAbs for growth inhibitory effect. The treatment of N1mAbs reduces tumor cell proliferation in vitro and in vivo, and sensitizes the cells to EGFR inhibitor, suggesting that NLRR1 is a novel regulatory molecule of RTK function. Importantly, epitope mapping analysis has revealed that N1mAbs with growth inhibitory effect recognize immunoglobulin-like and FNIII domains of NLRR1, which also indicates the importance of FNIII domain in the function of NLRR1. Thus, the present study provides a new insight into the development of a cancer therapy by targeting NLRR1 as a modulator of proliferative signals on cellular membrane of tumor cells.


Sign in / Sign up

Export Citation Format

Share Document