scholarly journals Integrative Metabolomics Reveals Deep Tissue and Systemic Metabolic Remodeling in Glioblastoma

Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5157
Author(s):  
Vianney Gilard ◽  
Justine Ferey ◽  
Florent Marguet ◽  
Maxime Fontanilles ◽  
Franklin Ducatez ◽  
...  

(1) Background: Glioblastoma is the most common malignant brain tumor in adults. Its etiology remains unknown in most cases. Glioblastoma pathogenesis consists of a progressive infiltration of the white matter by tumoral cells leading to progressive neurological deficit, epilepsy, and/or intracranial hypertension. The mean survival is between 15 to 17 months. Given this aggressive prognosis, there is an urgent need for a better understanding of the underlying mechanisms of glioblastoma to unveil new diagnostic strategies and therapeutic targets through a deeper understanding of its biology. (2) Methods: To systematically address this issue, we performed targeted and untargeted metabolomics-based investigations on both tissue and plasma samples from patients with glioblastoma. (3) Results: This study revealed 176 differentially expressed lipids and metabolites, 148 in plasma and 28 in tissue samples. Main biochemical classes include phospholipids, acylcarnitines, sphingomyelins, and triacylglycerols. Functional analyses revealed deep metabolic remodeling in glioblastoma lipids and energy substrates, which unveils the major role of lipids in tumor progression by modulating its own environment. (4) Conclusions: Overall, our study demonstrates in situ and systemic metabolic rewiring in glioblastoma that could shed light on its underlying biological plasticity and progression to inform diagnosis and/or therapeutic strategies.

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2560
Author(s):  
Luis G. Guijarro ◽  
Patricia Sanmartin-Salinas ◽  
Eva Pérez-Cuevas ◽  
M. Val Toledo-Lobo ◽  
Jorge Monserrat ◽  
...  

New evidence suggests that insulin receptor substrate 4 (IRS-4) may play an important role in the promotion of tumoral growth. In this investigation, we have evaluated the role of IRS-4 in a pilot study performed on patients with liver cancer. We used immunohistochemistry to examine IRS-4 expression in biopsies of tumoral tissue from a cohort of 31 patient suffering of hepatocellular carcinoma (HCC). We simultaneously analyzed the expression of the cancer biomarkers PCNA, Ki-67, and pH3 in the same tissue samples. The in vitro analysis was conducted by studying the behavior of HepG2 cells following IRS-4 overexpression/silencing. IRS-4 was expressed mainly in the nuclei of tumoral cells from HCC patients. In contrast, in healthy cells involved in portal triads, canaliculi, and parenchymal tissue, IRS-4 was observed in the cytosol and the membrane. Nuclear IRS-4 in the tumoral region was found in 69.9 ± 3.2%, whereas in the surrounding healthy hepatocytes, nuclear IRS-4 was rarely observed. The percentage of tumoral cells that exhibited nuclear PCNA and Ki-67 were 52.1 ± 7%, 6.1 ± 1.1% and 1.3 ± 0.2%, respectively. Furthermore, we observed a significant positive linear correlation between nuclear IRS-4 and PCNA (r = 0.989; p < 0.001). However, when we correlated the nuclear expression of IRS-4 and Ki-67, we observed a significant positive curvilinear correlation (r = 0.758; p < 0.010). This allowed us to define two populations, (IRS-4 + Ki-67 ≤ 69%) and (IRS-4 + Ki-67 > 70%). The population with lower levels of IRS-4 and Ki-67 had a higher risk of suffering from multifocal liver cancer (OR = 16.66; CI = 1.68–164.8 (95%); p < 0.05). Immunoblot analyses showed that IRS-4 in normal human liver biopsies was lower than in HepG2, Huh7, and Chang cells. Treatment of HepG2 with IGF-1 and EGF induced IRS-4 translocation to the nucleus. Regulation of IRS-4 levels via HepG2 transfection experiments revealed the protein’s role in proliferation, cell migration, and cell-collagen adhesion. Nuclear IRS-4 is increased in the tumoral region of HCC. IRS-4 and Ki-67 levels are significantly correlated with the presence of multifocal HCC. Moreover, upregulation of IRS-4 in HepG2 cells induced proliferation by a β-catenin/Rb/cyclin D mechanism, whereas downregulation of IRS-4 caused a loss in cellular polarity and in its adherence to collagen as well as a gain in migratory and invasive capacities, probably via an integrin α2 and focal adhesion cascade (FAK) mechanism.


2020 ◽  
Vol 19 ◽  
pp. 153303382096746
Author(s):  
Da Liu ◽  
Min Qiu ◽  
Lili Jiang ◽  
Kuiran Liu

The functions of Long noncoding RNA (lncRNA) HOXB-AS1 have been investigated in glioblastoma and multiple myeloma. However, the role of lncRNA HOXB-AS1 in endometrial carcinoma (EC) remains largely unknown. This study investigated the underlying mechanisms of the lncRNA HOXB-AS1 on the progression of EC. In this study, We found that HOXB-AS1 expression was significantly upregulated in EC tissue samples and was associated with shorter survival time. Furthermore, upregulation of HOXB-AS1 promoted proliferation, invasion, and migration of EC cell. HOXB-AS1 and Wnt10b directly bound to miR-149-3p. HOXB-AS1 increased the expression of Wnt10b by binding to miR-149-3p. We further verified the upregulation of β-catenin, cyclin D1, and c-myc induced by HOXB-AS1. In conclusion, our results indicated that HOXB-AS1 exerted oncogenic function as competing endogenous RNA (ceRNA) of miR-149-3p to release Wnt10b and activated Wnt/β-catenin pathway.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
J. T. Kempthorne ◽  
R. Ailabouni ◽  
S. Raniga ◽  
D. Hammer ◽  
G. Hooper

Our aim was to determine the incidence of occult infection and to examine the role of ultrasound sonication of the implants in cases of presumed aseptic loosening in a prospective trial. Joint swabs, aspirates, and deep tissue samples were obtained from around the prosthesis for routine microbiology. Each prosthesis was sonicated and the sonicate examined with Gram staining and extended cultures. There were 106 joints in the study of which 54 were revised for aseptic loosening and 52 were assigned to the control revision group. There were 9 positive cultures with 8/54 positive cultures in the aseptic loosening group and 1/52 in the control revision group (p=0.017, associated OR 47.7). We found concordant results between sonication fluid culture and conventional samples in 5/9 cultures. Preoperative inflammatory markers were not prognostic for infection.Coagulase-negative Staphylococcuswas the most commonly cultured organism (7/9). Previously unrecognised infection was present in 15% of patients undergoing revision for aseptic loosening. Ultrasound sonication of the removed prosthesis was less sensitive than conventional sampling techniques. We recommend routine intraoperative sampling for patients having revision for aseptic loosening, but we do not support the routine use of ultrasound sonication for its detection.


2016 ◽  
Vol 311 (1) ◽  
pp. R66-R78 ◽  
Author(s):  
Kumi Hasegawa ◽  
Akira Kato ◽  
Taro Watanabe ◽  
Wataru Takagi ◽  
Michael F. Romero ◽  
...  

Most vertebrates, including cartilaginous fishes, maintain their plasma SO42− concentration ([SO42−]) within a narrow range of 0.2–1 mM. As seawater has a [SO42−] about 40 times higher than that of the plasma, SO42− excretion is the major role of kidneys in marine teleost fishes. It has been suggested that cartilaginous fishes also excrete excess SO42− via the kidney. However, little is known about the underlying mechanisms for SO42− transport in cartilaginous fish, largely due to the extraordinarily elaborate four-loop configuration of the nephron, which consists of at least 10 morphologically distinguishable segments. In the present study, we determined cDNA sequences from the kidney of holocephalan elephant fish ( Callorhinchus milii) that encoded solute carrier family 26 member 1 (Slc26a1) and member 6 (Slc26a6), which are SO42− transporters that are expressed in mammalian and teleost kidneys. Elephant fish Slc26a1 (cmSlc26a1) and cmSlc26a6 mRNAs were coexpressed in the proximal II (PII) segment of the nephron, which comprises the second loop in the sinus zone. Functional analyses using Xenopus oocytes and the results of immunohistochemistry revealed that cmSlc26a1 is a basolaterally located electroneutral SO42− transporter, while cmSlc26a6 is an apically located, electrogenic Cl−/SO42− exchanger. In addition, we found that both cmSlc26a1 and cmSlc26a6 were abundantly expressed in the kidney of embryos; SO42− was concentrated in a bladder-like structure of elephant fish embryos. Our results demonstrated that the PII segment of the nephron contributes to the secretion of excess SO42− by the kidney of elephant fish. Possible mechanisms for SO42− secretion in the PII segment are discussed.


2021 ◽  
Author(s):  
kunwei niu ◽  
Shibin Qu ◽  
Xuan Zhang ◽  
Jimin Dai ◽  
Jianlin Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is often diagnosed at a late stage, when the prognosis is poor. The regulation of long non-coding RNAs (lncRNAs) plays a crucial role in HCC. However, the precise regulatory mechanisms of lncRNA signaling in HCC remain largely unknown. We study aim to investigate the underlying mechanisms of lncRNA (upregulated in hepatocellular carcinoma) URHC in HCC. Methods: RT-qPCR, fluorescence in situ hybridization (FISH) staining, EdU, colony formation, and tumor xenografts experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The bioinformatics analysis, Dual-luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC.Results: URHC silencing may inhibit the HCC cells proliferation in vitro and in vivo. We found that URHC was mainly localized in the cytoplasm. The expression of miR-5007-3p was negatively regulated by URHC. And miR-5007-3p could reverse the effect of URHC in HCC cells. The expression of DNAJB9 was negatively regulated by miR-5007-3p but positively regulated by URHC. These suggesting of lncRNA-URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p.Conclusion: Together, our study elucidated the role of URHC as a miRNA sponge in HCC, and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.


2020 ◽  
Author(s):  
Nguyet Le ◽  
Timothy Hufford ◽  
Rachel Brewster

ABSTRACTMany organisms rely on oxygen to generate energy in the form of adenosine triphosphate (ATP). During severe hypoxia, the production of ATP decreases due to diminished activity of the electron transport chain, leading to cell damage or death. Conversely, excessive oxygen causes oxidative stress that is equally damaging to cells. To mitigate pathological outcomes, organisms have evolved mechanisms to adapt to fluctuations in oxygen levels. Zebrafish embryos are remarkably hypoxia-tolerant, surviving anoxia (zero oxygen) for hours in a hypometabolic, energy-conserving state. To begin to unravel underlying mechanisms, we analyze here the distribution and hypoxia-dependent regulation of members of the N-myc Downstream Regulated Gene (Ndrg) family, Ndrg 1-4. These genes have primarily been studied in cancer cells, and hence little is understood about their normal function. We show here using in situ hybridization that, under normoxic conditions, ndrgs are expressed in metabolically-demanding organs of the zebrafish embryo, such as the brain, kidney, and heart. Following exposure of embryos to different severity and durations of hypoxia, we observed that ndrgs are differentially regulated and that ndrg1a is the most responsive member of this family, with nine-fold upregulation following prolonged anoxia. We further show that this treatment resulted in de novo expression of ndrg1a in tissues where it is not observed under normoxia, such as head vasculature, the inner ear, and somites. These findings provide an entry point into understanding the role of this conserved gene family in hypoxia adaptation of normal cells.


2021 ◽  
Author(s):  
Huilei Wang ◽  
Alan Poe ◽  
Lydia Pak ◽  
Sandeep Jandu ◽  
Kavitha Nandakumar ◽  
...  

AbstractThe lysyl oxidase family of enzymes (LOXs) catalyze oxidative deamination of lysine side chains on collagen and elastin to initialize cross-linking that is essential for the formation of the extracellular matrix (ECM). Elevated expression of LOXs is highly associated with diverse disease processes. To date, the inability to detect total LOX catalytic function in situ has limited the ability to fully elucidate the role of LOXs in pathobiological mechanisms. Using LOXL2 as a representative member of the LOX family, we developed an in situ activity assay by utilizing the strong reaction between hydrazide and aldehyde to label the LOX-catalyzed allysine (-CHO) residues with biotin-hydrazide. The biotinylated ECM proteins are then labeled via biotin-streptavidin interaction and detected by fluorescence microscopy. This assay detects the total LOX activity in situ for both overexpressed and endogenous LOXs in cells and tissue samples and can be used for studies of LOXs as therapeutic targets.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Kirsty Danielson ◽  
Yonathan Melman ◽  
Bridget Simonson ◽  
Andreas Barth ◽  
Khalid Chakir ◽  
...  

Introduction: We have previously shown that plasma miR-30d level is an independent predictor of echocardiographic response to cardiac resynchronization therapy (CRT) in patients with dyssynchronous heart failure (DHF). We now test the hypothesis that miR-30d is dynamically regulated in cardiomyocytes (CMs) and plays a functional role in DHF. Methods: miR-30d levels were assessed in a canine model of DHF and CRT using qRT-PCR, and potential miR-30d targets were identified using a bioinformatics approach. miR-30d targets were validated in the canine model and in CMs in culture. The regulation and functional role of miR-30d was investigated in CMs in culture using microscopy, western blotting and qRT-pCR. Results: miR-30d is enriched in the coronary sinus compared to peripheral blood in human patients, suggesting a cardiac origin (n=7, p<0.05). In tissue samples from the canine model of DHF, miR-30d levels are highest in the lateral wall, in concert with the greatest wall stress, and decreases with CRT (n=5, p<0.05). Bioinformatics analysis using differential gene expression data and in silico miR target prediction algorithms identified integrin and PI3/Akt signaling pathways as targets of miR-30d. Several targets including MAP4K4 and lims1 were further validated in tissue as well as in cultured CMs (n=4, p<0.05). miR-30d appears to be expressed in CMs, packaged into exosomes and micovesicles, and released in response to pathological rotational stress (n=2). Over-expression of miR-30d in CMs induces cellular hypertrophy with a unique expression signature of cardiac hypertrophy markers most consistent with physiological hypertrophy (n=3, p<0.05). Overexpression of miR-30d appears to be cardioprotective by abrogating TNF-induced increase in MAP4K4 expression (n=4, p<0.05). Conclusions: miR-30d is dynamically regulated in DHF and appears to play an important role in CM biology. Further insight into the role of ‘stretch’-regulated microRNAs such as miR-30d may pave the way for novel therapeutic and diagnostic strategies.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Linghua Yu ◽  
Linlin Wang ◽  
Xiaojun Wu ◽  
Huixing Yi

AbstractWnt signaling dysfunction and gut dysbiosis may lead to liver fibrosis, yet the underlying mechanisms are not well elucidated. This study demonstrated the role of RSPO4, a Wnt signaling agonist, in liver fibrogenesis and its impact on the gut microbiome. RSPO4 gene in CCl4-induced fibrotic-liver rats was knockout by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system, with healthy rats served as the control. Tissue samples and hepatic stellate cells (HSCs) isolated from rats were examined for curative effect of RSPO4-CRISPR treatment. Fecal sample were collected and analyzed with 16 S rRNA sequencing. We found RSPO4-CRISPR relieved liver fibrosis in rats and reversed HSC activation. Further, results showed RSPO4-CRISPR tended to restore the microflora composition. Significance species between groups were identified. Bacteroides and Escherichia-Shigella were the key microbes in the model and negative group, whereas Lactobacillus, Romboutsia, and Lachnospiraceae NK4A136 group were abundant in the control. Notably, Bacteroidales S24-7 group and Ruminococcaceae UCG-005 were the significantly enriched in CRISPR group. We show that the microbiome of rats treated with RSPO4-CRISPR presents a trend towards the restoration of the original condition. Our findings pave a new way to evaluate the curative effect of liver fibrosis treatment.


2013 ◽  
Vol 51 (4) ◽  
pp. 315-322
Author(s):  
C. Jardeleza ◽  
D. Miljkovic ◽  
L. Baker ◽  
S. Boase ◽  
N.C.W. Tan ◽  
...  

Background: The role of inflammasomes in chronic inflammation has been the subject of intense research in recent years. Chronic rhinosinusitis (CRS), a persistent inflammatory disease, continues to be investigated hoping that a clearer pathophysiologic description will guide discovery of future treatment modalities. This study investigates the role of inflammasome complexes in CRS patients with Staphylococcus aureus biofilm infection, a key culprit associated with disease severity and recalcitrance. Methodology: Sinonasal tissue samples were collected from CRS patients with (P+) and without (P-) polyps and controls. S. aureus biofilm status was obtained using fluorescence in situ hybridization and classified as biofilm positive (B+) or negative (B-). RNA was analysed using a Human Inflammasome PCR array, profiling the expression of 84 genes involved in inflammasome function. Results: Sixteen samples were obtained: 5 B+P+, 5 B-P- and 6 controls. Comparing B+P+ vs. controls showed the greatest number of differentially expressed genes. In particular, Absent in Melanoma 2 (AIM2) was consistently and significantly up-regulated in the B+P+ vs. B-P- and controls. In contrast, when comparing the B-P- vs. controls, no genes showed significant changes. Conclusion: Our results indicate the involvement of inflammasome complexes and their signalling pathways in CRS patients with polyps and S. aureus biofilms. In particular, AIM2, activated by intracellular double-stranded DNA, is up-regulated in this group, implying that S. aureus may play a role in intracellular triggering of the inflammasome response. Studies with further patient stratification and assessing corresponding protein expression are needed to further characterize the role of inflammasomes in CRS.


Sign in / Sign up

Export Citation Format

Share Document