scholarly journals An Exploratory Analysis of Changes in Circulating Plasma Protein Profiles Following Image-Guided Ablation of Renal Tumours Provides Evidence for Effects on Multiple Biological Processes

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6037
Author(s):  
Tze Min Wah ◽  
Jim Zhong ◽  
Michelle Wilson ◽  
Naveen S. Vasudev ◽  
Rosamonde E. Banks

Further biological understanding of the immune and inflammatory responses following ablation is critical to the rational development of combination ablation-immunotherapies. Our pilot exploratory study evaluated the circulating plasma protein profiles after image-guided ablation (IGA) of small renal masses to determine the resultant systemic effects and provide insight into impact both on the tumour and immune system. Patients undergoing cryotherapy (CRYO), radiofrequency ablation (RFA) or microwave ablation (MWA) for small renal tumours were recruited. Blood samples were obtained at four timepoints; two baselines prior to IGA and at 24 h and 1–3 months post-IGA, and a panel of 164 proteins measured. Of 55 patients recruited, 35 underwent ablation (25 CRYO, 8 RFA, 2 MWA) and biomarker measurements. The most marked changes were 24 h post-CRYO, with 29 proteins increasing and 18 decreasing significantly, principally cytokines and proteins involved in regulating inflammation, danger-associated molecular patterns (DAMPs), cell proliferation, hypoxic response, apoptosis and migration. Intra-individual variation was low but inter-individual variation was apparent, for example all patients showed increases in IL-6 (1.7 to 29-fold) but only 50% in CD27. Functional annotation analysis highlighted immune/inflammation and cell proliferation/angiogenesis-related clusters, with interaction networks around IL-6, IL-10, VEGF-A and several chemokines. Increases in IL-8, IL-6, and CCL23 correlated with cryoprobe number (p = 0.01, rs = 0.546; p = 0.009, rs = 0.5515; p = 0.005, rs = 0.5873, respectively). This initial data provide further insights into ablation-induced biological changes of relevance in informing trial design of immunotherapies combined with ablation.

2020 ◽  
Author(s):  
Lungwani Muungo

ADP ribosylation factor GTPase-activating protein 3 (ARFGAP3) is a GTPase-activating protein that associates with the Golgiapparatus and regulates the vesicular trafficking pathway. In the present study, we examined the contribution of ARFGAP3 toprostate cancer cell biology. We showed that ARFGAP3 expression was induced by 100 nM of dihydrotestosterone (DHT) atboth the mRNA and protein levels in androgen-sensitive LNCaP cells. We generated stable transfectants of LNCaP cells withFLAG-tagged ARFGAP3 or a control empty vector and showed that ARFGAP3 overexpression promoted cell proliferation andmigration compared with control cells. We found that ARFGAP3 interacted with paxillin, a focal adhesion adaptor protein thatis important for cell mobility and migration. Small interfering RNA (siRNA)-mediated knockdown of ARFGAP3 showed thatARFGAP3 siRNA markedly reduced LNCaP cell growth. Androgen receptor (AR)-dependent transactivation activity on prostatespecificantigen (PSA) enhancer was synergistically promoted by exogenous ARFGAP3 and paxillin expression, as shown byluciferase assay in LNCaP cells. Thus, our results suggest that ARFGAP3 is a novel androgen-regulated gene that can promoteprostate cancer cell proliferation and migration in collaboration with paxillin.


2020 ◽  
Author(s):  
Lungwani Muungo

TRIM44 has oncogenic roles in various cancers. However, TRIM44 expression andits function in renal cell carcinoma (RCC) are still unknown. Here in this study, weinvestigated the clinical significance of TRIM44 and its biological function in RCC.TRIM44 overexpression was significantly associated with clinical M stage, histologictype (clear cell) and presence of lymphatic invasion (P = .047, P = .005, and P = .028,respectively). Moreover, TRIM44 overexpression was significantly associated withpoor prognosis in terms of cancer-specific survival (P = .019). Gain-of-function andloss-of-function studies using TRIM44 and siTRIM44 transfection showed thatTRIM44 promotes cell proliferation and cell migration in two RCC cell lines, Caki1and 769P. To further investigate the role of TRIM44 in RCC, we performed integratedmicroarray analysis in Caki1 and 769P cells and explored the data in the Oncominedatabase. Interestingly, FRK was identified as a promising candidate target gene ofTRIM44, which was downregulated in RCC compared with normal renal tissues. Wefound that cell proliferation was inhibited by TRIM44 knockdown and then recoveredby siFRK treatment. Taken together, the present study revealed the associationbetween high expression of TRIM44 and poor prognosis in


2019 ◽  
Vol 19 (6) ◽  
pp. 504-511 ◽  
Author(s):  
Yige Qi ◽  
Ting Yan ◽  
Lu Chen ◽  
Qiang Zhang ◽  
Weishu Wang ◽  
...  

Background:The oncoprotein binding (OPB) domain of Yin Yang 1 (YY1) consists of 26 amino acids between G201 and S226, and is involved in YY1 interaction with multiple oncogene products, including MDM2, AKT, EZH2 and E1A. Through the OPB domain, YY1 promotes the oncogenic or proliferative regulation of these oncoproteins in cancer cells. We previously demonstrated that a peptide with the OPB sequence blocked YY1-AKT interaction and inhibited breast cancer cell proliferation.Objective:In the current study, we characterized the OPB domain and determined a minimal region for peptide design to suppress cancer cellMethods:Using alanine-scan method, we identified that the amino acids at OPB C-terminal are essential to YY1 binding to AKT. Further studies suggested that serine and threonine residues, but not lysines, in OPB play a key role in YY1-AKT interaction. We generated GFP fusion expression vectors to express OPB peptides with serially deleted N-terminal and found that OPB1 (i.e. G201-S226) is cytoplasmic, but OPB2 (i.e. E206-S226), OPB3 (i.e. E206-S226) and control peptide were both nuclear and cytoplasmic.Results:Both OPB1 and 2 inhibited breast cancer cell proliferation and migration, but OPB3 exhibited similar effects to control. OPB1 and 2 caused cell cycle arrest at G1 phase, increased p53 and p21 expression, and reduced AKT(S473) phosphorylation in MCF-7 cells, but not in MDA-MB-231 cells.Conclusion:: Overall, the serines and threonines of OPB are essential to YY1 binding to oncoproteins, and OPB peptide can be minimized to E206-S226 that maintain inhibitory activity to YY1- promoted cell proliferation.


2020 ◽  
Vol 15 (1) ◽  
pp. 49-58
Author(s):  
Junhe Zhang ◽  
Shujie Chai ◽  
Xinyu Ruan

Background: Breast cancer is among the most common malignant cancers worldwide, and breast adenocarcinoma in glandular tissue cells has excessive metastasis and invasion capability. However, little is known on the molecular process by which this disease develops and progresses. Objective: In this study, we explored the effects of sex-determining region Y-box 4 (SOX4) protein on proliferation, migration, apoptosis and tumourigenesis of breast adenocarcinoma and its possible mechanisms. Methods: The SOX4 overexpression or knockdown Michigan Cancer Foundation-7 (MCF-7) cell lines were established. Among the SOX4 overexpression or MCF-7 knockdown cell lines, proliferation, migration ability and apoptosis rate were detected. The expression levels of apoptosis-related proteins (Bax and Cleaved caspase-3) were analysed using Western blot. The effect of SOX4 on tumourigenesis was analysed using the clone formation assay in vitro and tumour xenograft experiment in nude mice. Results: Compared with the overexpression of control cells, proliferation and migration ability of SOX4 overexpression cells significantly increased, the apoptosis rate significantly decreased in addition to the expression levels of Bax and Cleaved caspase-3 (P < 0.05). Compared with the knockdown of control cells, proliferation and migration ability of SOX4 knockdown cells significantly decreased, and the apoptosis rate and expression levels of Bax and Cleaved caspase-3 significantly increased (P < 0.05). Clone formation and tumour growth abilities of SOX4 overexpression cells were significantly higher than those of the control cells (P < 0.05), whereas SOX4 knockdown cells had the opposite effect. Conclusion: SOX4 plays an oncogenic role in breast adenocarcinoma tumourigenesis by promoting cell proliferation, migration and inhibiting apoptosis. It can be used as a potential molecular target for breast cancer gene therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ye Qian ◽  
Yan Zhang ◽  
Haoming Ji ◽  
Yucheng Shen ◽  
Liangfeng Zheng ◽  
...  

Abstract Background Lung adenocarcinoma (LUAD) is one of the most common cancers with high morbidity and mortality worldwide. Long non-coding RNAs (lncRNAs) serve as tumor promoters or suppressors in the development of various human malignancies, including LUAD. Although long intergenic non-protein coding RNA 1089 (LINC01089) suppresses the progression of breast cancer, its mechanism in LUAD requires further exploration. Thus, we aimed to investigate the underlying function and mechanism of LINC01089 in LUAD. Methods The expression of LINC01089 in LUAD and normal cell lines was detected. Functional assays were applied to measure cell proliferation, apoptosis and migration. Besides, mechanism experiments were employed for assessing the interplay among LINC01089, miR-301b-3p and StAR related lipid transfer domain containing 13 (STARD13). Data achieved in this study was statistically analyzed with Student’s t test or one-way analysis of variance. Results LINC01089 expression was significantly down-regulated in LUAD tissues and cells and its overexpression could reduce cell proliferation and migration. Moreover, LINC01089 could regulate STARD13 expression through competitively binding to miR-301b-3p in LUAD. Additionally, rescue assays uncovered that STARD13 depletion or miR-301b-3p overexpression could countervail the restraining effect of LINC01089 knockdown on the phenotypes of LUAD cells. Conclusion LINC01089 served as a tumor-inhibitor in LUAD by targeting miR-301b-3p/STARD13 axis, providing an innovative insight into LUAD therapies. Trial registration Not applicable.


Sign in / Sign up

Export Citation Format

Share Document