scholarly journals Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6052
Author(s):  
Hongyan Xie ◽  
Jackson W. Appelt ◽  
Russell W. Jenkins

Recent advances in cancer immunotherapy have led a paradigm shift in the treatment of multiple malignancies with renewed focus on the host immune system and tumor–immune dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and wider application. Investigations into the mechanisms of response and resistance to immunotherapy have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions with multiple cell types is necessary to understand the mechanisms of response and resistance to cancer therapies. The lack of model systems that faithfully recapitulate key features of the tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent advances in TME models focusing on the use of microfluidic technology to study and model the TME, including the application of microfluidic technologies to study tumor–immune dynamics and response to cancer therapeutics. We also discuss the limitations of current systems and suggest future directions to utilize this technology to its highest potential.

2020 ◽  
Vol 8 (1) ◽  
pp. e000363 ◽  
Author(s):  
Samuel Chuah ◽  
Valerie Chew

Immunotherapy is a rapidly growing field for cancer treatment. In contrast to conventional cancer therapies, immunotherapeutic strategies focus on reactivating the immune system to mount an antitumor response. Despite the encouraging outcome in clinical trials, a large proportion of patients still do not respond to treatment and many experience different degrees of immune-related adverse events. Furthermore, it is now increasingly appreciated that even many conventional cancer therapies such as radiotherapy could have a positive impact on the host immune system for better clinical response. Hence, there is a need to better understand tumor immunity in order to design immunotherapeutic strategies, especially evidence-based combination therapies, for improved clinical outcomes. With this aim, cancer research turned its attention to profiling the immune contexture of either the tumor microenvironment (TME) or peripheral blood to uncover mechanisms and biomarkers which might aid in precision immunotherapeutics. Conventional technologies used for this purpose were limited by the depth and dimensionality of the data. Advances in newer techniques have, however, greatly improved the breadth and depth, as well as the quantity and quality of data that can be obtained. The result of these advances is a wealth of new information and insights on how the TME could be affected by various immune cell-types, and how this might in turn impact the clinical outcome of cancer patients . We highlight herein some of the high-dimensional technologies currently employed in immune profiling in cancer and summarize the insights and potential benefits they could bring in designing better cancer immunotherapies.


2020 ◽  
Vol 39 (3) ◽  
pp. 805-823 ◽  
Author(s):  
Georgina P. Sava ◽  
Hailing Fan ◽  
R. Charles Coombes ◽  
Lakjaya Buluwela ◽  
Simak Ali

Abstract Cyclin-dependent kinase 7 (CDK7), along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs progression through the cell cycle via T-loop phosphorylation of cell cycle CDKs. CAK is also a component of the general transcription factor, TFIIH. CDK7-mediated phosphorylation of RNA polymerase II (Pol II) at active gene promoters permits transcription. Cell cycle dysregulation is an established hallmark of cancer, and aberrant control of transcriptional processes, through diverse mechanisms, is also common in many cancers. Furthermore, CDK7 levels are elevated in a number of cancer types and are associated with clinical outcomes, suggestive of greater dependence on CDK7 activity, compared with normal tissues. These findings identify CDK7 as a cancer therapeutic target, and several recent publications report selective CDK7 inhibitors (CDK7i) with activity against diverse cancer types. Preclinical studies have shown that CDK7i cause cell cycle arrest, apoptosis and repression of transcription, particularly of super-enhancer-associated genes in cancer, and have demonstrated their potential for overcoming resistance to cancer treatments. Moreover, combinations of CDK7i with other targeted cancer therapies, including BET inhibitors, BCL2 inhibitors and hormone therapies, have shown efficacy in model systems. Four CDK7i, ICEC0942 (CT7001), SY-1365, SY-5609 and LY3405105, have now progressed to Phase I/II clinical trials. Here we describe the work that has led to the development of selective CDK7i, the current status of the most advanced clinical candidates, and discuss their potential importance as cancer therapeutics, both as monotherapies and in combination settings. ClinicalTrials.gov Identifiers: NCT03363893; NCT03134638; NCT04247126; NCT03770494.


2016 ◽  
Vol 96 (3) ◽  
pp. 805-829 ◽  
Author(s):  
Andreas Wicki ◽  
Mario Mandalà ◽  
Daniela Massi ◽  
Daniela Taverna ◽  
Huifang Tang ◽  
...  

Although modern therapeutic strategies have brought significant progress to cancer care in the last 30 years, drug resistance to targeted monotherapies has emerged as a major challenge. Aberrant regulation of multiple physiological signaling pathways indispensable for developmental and metabolic homeostasis, such as hyperactivation of pro-survival signaling axes, loss of suppressive regulations, and impaired functionalities of the immune system, have been extensively investigated aiming to understand the diversity of molecular mechanisms that underlie cancer development and progression. In this review, we intend to discuss the molecular mechanisms of how conventional physiological signal transduction confers to acquired drug resistance in cancer patients. We will particularly focus on protooncogenic receptor kinase inhibition-elicited tumor cell adaptation through two major core downstream signaling cascades, the PI3K/Akt and MAPK pathways. These pathways are crucial for cell growth and differentiation and are frequently hyperactivated during tumorigenesis. In addition, we also emphasize the emerging roles of the deregulated host immune system that may actively promote cancer progression and attenuate immunosurveillance in cancer therapies. Understanding these mechanisms may help to develop more effective therapeutic strategies that are able to keep the tumor in check and even possibly turn cancer into a chronic disease.


2020 ◽  
Vol 21 (21) ◽  
pp. 8359 ◽  
Author(s):  
Aleksandra Simiczyjew ◽  
Ewelina Dratkiewicz ◽  
Justyna Mazurkiewicz ◽  
Marcin Ziętek ◽  
Rafał Matkowski ◽  
...  

The low efficiency of currently-used anti-cancer therapies poses a serious challenge, especially in the case of malignant melanoma, a cancer characterized by elevated invasiveness and relatively high mortality rate. The role of the tumor microenvironment in the progression of melanoma and its acquisition of resistance to treatment seems to be the main focus of recent studies. One of the factors that, in normal conditions, aids the organism in its fight against the cancer and, following the malignant transformation, adapts to facilitate the development of the tumor is the immune system. A variety of cell types, i.e., T and B lymphocytes, macrophages, and dendritic and natural killer cells, as well as neutrophils, support the growth and invasiveness of melanoma cells, utilizing a plethora of mechanisms, including secretion of pro-inflammatory molecules, induction of inhibitory receptors expression, or depletion of essential nutrients. This review provides a comprehensive summary of the processes regulated by tumor-associated cells that promote the immune escape of melanoma cells. The described mechanisms offer potential new targets for anti-cancer treatment and should be further studied to improve currently-employed therapies.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zi-Kun Yu ◽  
Rui-Ling Xie ◽  
Rui You ◽  
You-Ping Liu ◽  
Xu-Yin Chen ◽  
...  

AbstractThe human microbiome is defined as the microorganisms that reside in or on the human body, such as bacteria, viruses, fungi, and protozoa, and their genomes. The human microbiome participates in the modulation of human metabolism by influencing several intricate pathways. The association between specific bacteria or viruses and the efficacy of cancer treatments and the occurrence of treatment-related toxicity in cancer patients has been reported. However, the understanding of the interaction between the host microbiome and the cancer treatment response is limited, and the microbiome potentially plays a greater role in the treatment of cancer than reported to date. Here, we provide a thorough review of the potential role of the gut and locally resident bacterial microbiota in modulating responses to different cancer therapeutics to demonstrate the association between the gut or locally resident bacterial microbiota and cancer therapy. Probable mechanisms, such as metabolism, the immune response and the translocation of microbiome constituents, are discussed to promote future research into the association between the microbiome and other types of cancer. We conclude that the interaction between the host immune system and the microbiome may be the basis of the role of the microbiome in cancer therapies. Future research on the association between host immunity and the microbiome may improve the efficacy of several cancer treatments and provide insights into the cause of treatment-related side effects.


2021 ◽  
Vol 61 (1) ◽  
pp. 541-563 ◽  
Author(s):  
Martine J. Smit ◽  
Géraldine Schlecht-Louf ◽  
Maria Neves ◽  
Jelle van den Bor ◽  
Petronila Penela ◽  
...  

Elevated expression of the chemokine receptors CXCR4 and ACKR3 and of their cognate ligand CXCL12 is detected in a wide range of tumors and the tumor microenvironment (TME). Yet, the molecular mechanisms by which the CXCL12/CXCR4/ACKR3 axis contributes to the pathogenesis are complex and not fully understood. To dissect the role of this axis in cancer, we discuss its ability to impinge on canonical and less conventional signaling networks in different cancer cell types; its bidirectional crosstalk, notably with receptor tyrosine kinase (RTK) and other factors present in the TME; and the infiltration of immune cells that supporttumor progression. We discuss current and emerging avenues that target the CXCL12/CXCR4/ACKR3 axis. Coordinately targeting both RTKs and CXCR4/ACKR3 and/or CXCL12 is an attractive approach to consider in multitargeted cancer therapies. In addition, inhibiting infiltrating immune cells or reactivating the immune system along with modulating the CXCL12/CXCR4/ACKR3 axis in the TME has therapeutic promise.


2021 ◽  
Vol 11 ◽  
Author(s):  
Andrew M. K. Law ◽  
Laura Rodriguez de la Fuente ◽  
Thomas J. Grundy ◽  
Guocheng Fang ◽  
Fatima Valdes-Mora ◽  
...  

Over 90% of potential anti-cancer drug candidates results in translational failures in clinical trials. The main reason for this failure can be attributed to the non-accurate pre-clinical models that are being currently used for drug development and in personalised therapies. To ensure that the assessment of drug efficacy and their mechanism of action have clinical translatability, the complexity of the tumor microenvironment needs to be properly modelled. 3D culture models are emerging as a powerful research tool that recapitulates in vivo characteristics. Technological advancements in this field show promising application in improving drug discovery, pre-clinical validation, and precision medicine. In this review, we discuss the significance of the tumor microenvironment and its impact on therapy success, the current developments of 3D culture, and the opportunities that advancements that in vitro technologies can provide to improve cancer therapeutics.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 715 ◽  
Author(s):  
Paz de la Torre ◽  
María Jesús Pérez-Lorenzo ◽  
Álvaro Alcázar-Garrido ◽  
Ana I. Flores

The main strategy of cancer treatment has focused on attacking the tumor cells. Some cancers initially responsive to chemotherapy become treatment-resistant. Another strategy is to block the formation of tumor vessels. However, tumors also become resistant to anti-angiogenic treatments, mostly due to other cells and factors present in the tumor microenvironment, and hypoxia in the central part of the tumor. The need for new cancer therapies is significant. The use of nanoparticle-based therapy will improve therapeutic efficacy and targeting, while reducing toxicity. However, due to inefficient accumulation in tumor sites, clearance by reticuloendothelial organs and toxicity, internalization or conjugation of drug-loaded nanoparticles (NPs) into mesenchymal stem cells (MSCs) can increase efficacy by actively delivering them into the tumor microenvironment. Nanoengineering MSCs with drug-loaded NPs can increase the drug payload delivered to tumor sites due to the migratory and homing abilities of MSCs. However, MSCs have some disadvantages, and exosomes and membranes from different cell types can be used to transport drug-loaded NPs actively to tumors. This review gives an overview of different cancer approaches, with a focus on hypoxia and the emergence of NPs as drug-delivery systems and MSCs as cellular vehicles for targeted delivery due to their tumor-homing potential.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3194
Author(s):  
Khosrow Kashfi ◽  
Jasmine Kannikal ◽  
Niharika Nath

Nitric oxide and its production by iNOS is an established mechanism critical to tumor promotion or suppression. Macrophages have important roles in immunity, development, and progression of cancer and have a controversial role in pro- and antitumoral effects. The tumor microenvironment consists of tumor-associated macrophages (TAM), among other cell types that influence the fate of the growing tumor. Depending on the microenvironment and various cues, macrophages polarize into a continuum represented by the M1-like pro-inflammatory phenotype or the anti-inflammatory M2-like phenotype; these two are predominant, while there are subsets and intermediates. Manipulating their plasticity through programming or reprogramming of M2-like to M1-like phenotypes presents the opportunity to maximize tumoricidal defenses. The dual role of iNOS-derived NO also influences TAM activity by repolarization to tumoricidal M1-type phenotype. Regulatory pathways and immunomodulation achieve this through miRNA that may inhibit the immunosuppressive tumor microenvironment. This review summarizes the classical physiology of macrophages and polarization, iNOS activities, and evidence towards TAM reprogramming with current information in glioblastoma and melanoma models, and the immunomodulatory and therapeutic options using iNOS or NO-dependent strategies.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1497
Author(s):  
Kajal H. Gupta ◽  
Christina Nowicki ◽  
Eileena F. Giurini ◽  
Amanda L. Marzo ◽  
Andrew Zloza

Currently approximately 10 million people die each year due to cancer, and cancer is the cause of every sixth death worldwide. Tremendous efforts and progress have been made towards finding a cure for cancer. However, numerous challenges have been faced due to adverse effects of chemotherapy, radiotherapy, and alternative cancer therapies, including toxicity to non-cancerous cells, the inability of drugs to reach deep tumor tissue, and the persistent problem of increasing drug resistance in tumor cells. These challenges have increased the demand for the development of alternative approaches with greater selectivity and effectiveness against tumor cells. Cancer immunotherapy has made significant advancements towards eliminating cancer. Our understanding of cancer-directed immune responses and the mechanisms through which immune cells invade tumors have extensively helped us in the development of new therapies. Among immunotherapies, the application of bacteria and bacterial-based products has promising potential to be used as treatments that combat cancer. Bacterial targeting of tumors has been developed as a unique therapeutic option that meets the ongoing challenges of cancer treatment. In comparison with other cancer therapeutics, bacterial-based therapies have capabilities for suppressing cancer. Bacteria are known to accumulate and proliferate in the tumor microenvironment and initiate antitumor immune responses. We are currently well-informed regarding various methods by which bacteria can be manipulated by simple genetic engineering or synthetic bioengineering to induce the production of anti-cancer drugs. Further, bacterial-based cancer therapy (BBCT) can be either used as a monotherapy or in combination with other anticancer therapies for better clinical outcomes. Here, we review recent advances, current challenges, and prospects of bacteria and bacterial products in the development of BBCTs.


Sign in / Sign up

Export Citation Format

Share Document