scholarly journals STAT3 Enhances Sensitivity of Glioblastoma to Drug-Induced Autophagy-Dependent Cell Death

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 339
Author(s):  
Janina Remy ◽  
Benedikt Linder ◽  
Ulrike Weirauch ◽  
Bryan W. Day ◽  
Brett W. Stringer ◽  
...  

Glioblastoma (GBM) is a devastating disease and the most common primary brain malignancy of adults with a median survival barely exceeding one year. Recent findings suggest that the antipsychotic drug pimozide triggers an autophagy-dependent, lysosomal type of cell death in GBM cells with possible implications for GBM therapy. One oncoprotein that is often overactivated in these tumors and associated with a particularly dismal prognosis is Signal Transducer and Activator of Transcription 3 (STAT3). Here, we used isogenic human and murine GBM knockout cell lines, advanced fluorescence microscopy, transcriptomic analysis and FACS-based assessment of cell viability to show that STAT3 has an underappreciated, context-dependent role in drug-induced cell death. Specifically, we demonstrate that depletion of STAT3 significantly enhances cell survival after treatment with Pimozide, suggesting that STAT3 confers a particular vulnerability to GBM. Furthermore, we show that active STAT3 has no major influence on the early steps of the autophagy pathway, but exacerbates drug-induced lysosomal membrane permeabilization (LMP) and release of cathepsins into the cytosol. Collectively, our findings support the concept of exploiting the pro-death functions of autophagy and LMP for GBM therapy and to further determine whether STAT3 can be employed as a treatment predictor for highly apoptosis-resistant, but autophagy-proficient cancers.

2020 ◽  
Vol 21 (20) ◽  
pp. 7530
Author(s):  
Shakya Rajina ◽  
Woo Jean Kim ◽  
Jung-Hyun Shim ◽  
Kyung-Soo Chun ◽  
Sang Hoon Joo ◽  
...  

The mortality rate of ovarian cancer (OC) worldwide increases with age. OC is an often fatal cancer with a curative rate of only 20–30%, as symptoms often appear after disease progression. Studies have reported that isolinderalactone (ILL), a furanosesquiterpene derivative extracted from the dried root of Lindera aggregata, can inhibit several cancer cell lines’ growth. However, the molecular mechanisms underlying ILL activities in human OC cells remain unexplored. This study investigated the antitumor activities of ILL in human OC cells by inducing mitochondrial superoxide (mtSO) and JAK-signal transducer and activator of transcription 3 (STAT3)-dependent cell death. ILL caused cell death in SKOV-3 and OVCAR-3 cells and increased the cell proportion in the subG1 phase. Additionally, ILL significantly induced mtSO production and reduced ROS production. Moreover, ILL downregulated mitochondrial membrane potential and the expression levels of anti-apoptotic Bcl-2 family proteins and superoxide dismutase (SOD)2. Results showed that ILL decreased phosphorylation of serine 727 and tyrosine 705 of STAT3 and expression of survivin, a STAT3-regulated gene. Furthermore, ILL-induced cell death was reversed by pretreatment of Mito-TEMPO, a mitochondria-specific antioxidant. These results suggest that ILL induces cell death by upregulation of mtSO, downregulation of mitochondrial SOD2, and inactivation of the STAT3-mediated pathway.


2014 ◽  
Vol 121 (4) ◽  
pp. 786-800 ◽  
Author(s):  
Danielle M. Twaroski ◽  
Yasheng Yan ◽  
Jessica M. Olson ◽  
Zeljko J. Bosnjak ◽  
Xiaowen Bai

Abstract Background: Recent studies in various animal models have suggested that anesthetics such as propofol, when administered early in life, can lead to neurotoxicity. These studies have raised significant safety concerns regarding the use of anesthetics in the pediatric population and highlight the need for a better model to study anesthetic-induced neurotoxicity in humans. Human embryonic stem cells are capable of differentiating into any cell type and represent a promising model to study mechanisms governing anesthetic-induced neurotoxicity. Methods: Cell death in human embryonic stem cell–derived neurons was assessed using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick end labeling staining, and microRNA expression was assessed using quantitative reverse transcription polymerase chain reaction. miR-21 was overexpressed and knocked down using an miR-21 mimic and antagomir, respectively. Sprouty 2 was knocked down using a small interfering RNA, and the expression of the miR-21 targets of interest was assessed by Western blot. Results: Propofol dose and exposure time dependently induced significant cell death (n = 3) in the neurons and down-regulated several microRNAs, including miR-21. Overexpression of miR-21 and knockdown of Sprouty 2 attenuated the increase in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick end labeling–positive cells following propofol exposure. In addition, miR-21 knockdown increased the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick end labeling–positive cells by 30% (n = 5). Finally, activated signal transducer and activator of transcription 3 and protein kinase B (Akt) were down-regulated, and Sprouty 2 was up-regulated following propofol exposure (n = 3). Conclusions: These data suggest that (1) human embryonic stem cell–derived neurons represent a promising in vitro human model for studying anesthetic-induced neurotoxicity, (2) propofol induces cell death in human embryonic stem cell–derived neurons, and (3) the propofol-induced cell death may occur via a signal transducer and activator of transcription 3/miR-21/Sprouty 2–dependent mechanism.


2020 ◽  
Author(s):  
Laura Zein ◽  
Simone Fulda ◽  
Donat Kögel ◽  
Sjoerd J.L. van Wijk

2020 ◽  
Vol 4 (19) ◽  
pp. 4823-4833
Author(s):  
Júlia Aguadé-Gorgorió ◽  
Scott McComb ◽  
Cornelia Eckert ◽  
Anna Guinot ◽  
Blerim Marovca ◽  
...  

Abstract Despite major advances in the treatment of patients with acute lymphoblastic leukemia in the last decades, refractory and/or relapsed disease remains a clinical challenge, and relapsed leukemia patients have an exceedingly dismal prognosis. Dysregulation of apoptotic cell death pathways is a leading cause of drug resistance; thus, alternative cell death mechanisms, such as necroptosis, represent an appealing target for the treatment of high-risk malignancies. We and other investigators have shown that activation of receptor interacting protein kinase 1 (RIP1)–dependent apoptosis and necroptosis by second mitochondria derived activator of caspase mimetics (SMs) is an attractive antileukemic strategy not currently exploited by standard chemotherapy. However, the underlying molecular mechanisms that determine sensitivity to SMs have remained elusive. We show that tumor necrosis factor receptor 2 (TNFR2) messenger RNA expression correlates with sensitivity to SMs in primary human leukemia. Functional genetic experiments using clustered regularly interspaced short palindromic repeats/Cas9 demonstrate that TNFR2 and TNFR1, but not the ligand TNF-α, are essential for the response to SMs, revealing a ligand-independent interplay between TNFR1 and TNFR2 in the induction of RIP1-dependent cell death. Further potential TNFR ligands, such as lymphotoxins, were not required for SM sensitivity. Instead, TNFR2 promotes the formation of a RIP1/TNFR1-containing death signaling complex that induces RIP1 phosphorylation and RIP1-dependent apoptosis and necroptosis. Our data reveal an alternative paradigm for TNFR2 function in cell death signaling and provide a rationale to develop strategies for the identification of leukemias with vulnerability to RIP1-dependent cell death for tailored therapeutic interventions.


Biology ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 82 ◽  
Author(s):  
Linder ◽  
Kögel

Autophagy has important functions in maintaining energy metabolism under conditions of starvation and to alleviate stress by removal of damaged and potentially harmful cellular components. Therefore, autophagy represents a pro-survival stress response in the majority of cases. However, the role of autophagy in cell survival and cell death decisions is highly dependent on its extent, duration, and on the respective cellular context. An alternative pro-death function of autophagy has been consistently observed in different settings, in particular, in developmental cell death of lower organisms and in drug-induced cancer cell death. This cell death is referred to as autophagic cell death (ACD) or autophagy-dependent cell death (ADCD), a type of cellular demise that may act as a backup cell death program in apoptosis-deficient tumors. This pro-death function of autophagy may be exerted either via non-selective bulk autophagy or excessive (lethal) removal of mitochondria via selective mitophagy, opening new avenues for the therapeutic exploitation of autophagy/mitophagy in cancer treatment.


2015 ◽  
Vol 43 (1) ◽  
pp. 241-248 ◽  
Author(s):  
Youhua Huang ◽  
Xiaohong Huang ◽  
Ying Yang ◽  
Wei Wang ◽  
Yepin Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document