scholarly journals Restoring FAS Expression via Lipid-Encapsulated FAS DNA Nanoparticle Delivery Is Sufficient to Suppress Colon Tumor Growth In Vivo

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 361
Author(s):  
Alyssa D. Merting ◽  
Dakota B. Poschel ◽  
Chunwan Lu ◽  
John D. Klement ◽  
Dafeng Yang ◽  
...  

A hallmark of human colorectal cancer is lost expression of FAS, the death receptor for FASL of cytotoxic T lymphocytes (CTLs). However, it is unknown whether restoring FAS expression alone is sufficient to suppress csolorectal-cancer development. The FAS promoter is hypermethylated and inversely correlated with FAS mRNA level in human colorectal carcinomas. Analysis of single-cell RNA-Seq datasets revealed that FAS is highly expressed in epithelial cells and immune cells but down-regulated in colon-tumor cells in human colorectal-cancer patients. Codon usage-optimized mouse and human FAS cDNA was designed, synthesized, and encapsulated into cationic lipid to formulate nanoparticle DOTAP-Chol-mFAS and DOTAP-Chol-hFAS, respectively. Overexpression of codon usage-optimized FAS in metastatic mouse colon-tumor cells enabled FASL-induced elimination of FAS+ tumor cells in vitro, suppressed colon tumor growth, and increased the survival of tumor-bearing mice in vivo. Overexpression of codon-optimized FAS-induced FAS receptor auto-oligomerization and tumor cell auto-apoptosis in metastatic human colon-tumor cells. DOTAP-Chol-hFAS therapy is also sufficient to suppress metastatic human colon tumor xenograft growth in athymic mice. DOTAP-Chol-mFAS therapy exhibited no significant liver toxicity. Our data determined that tumor-selective delivery of FAS DNA nanoparticles is sufficient for suppression of human colon tumor growth in vivo.

Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1006
Author(s):  
John D. Klement ◽  
Dakota B. Poschel ◽  
Chunwan Lu ◽  
Alyssa D. Merting ◽  
Dafeng Yang ◽  
...  

Human colorectal cancers are mostly microsatellite-stable with no response to anti-PD-1 blockade immunotherapy, necessitating the development of a new immunotherapy. Osteopontin (OPN) is elevated in human colorectal cancer and may function as an immune checkpoint. We aimed at elucidating the mechanism of action of OPN and determining the efficacy of OPN blockade immunotherapy in suppression of colon cancer. We report here that OPN is primarily expressed in tumor cells, myeloid cells, and innate lymphoid cells in human colorectal carcinoma. Spp1 knock out mice exhibit a high incidence and fast growth rate of carcinogen-induced tumors. Knocking out Spp1 in colon tumor cells increased tumor-specific CTL cytotoxicity in vitro and resulted in decreased tumor growth in vivo. The OPN protein level is elevated in the peripheral blood of tumor-bearing mice. We developed four OPN neutralization monoclonal antibodies based on their efficacy in blocking OPN inhibition of T cell activation. OPN clones 100D3 and 103D6 increased the efficacy of tumor-specific CTLs in killing colon tumor cells in vitro and suppressed colon tumor growth in tumor-bearing mice in vivo. Our data indicate that OPN blockade immunotherapy with 100D3 and 103D6 has great potential to be further developed for colorectal cancer immunotherapy and for rendering a colorectal cancer response to anti-PD-1 immunotherapy.


Oncotarget ◽  
2016 ◽  
Vol 7 (13) ◽  
pp. 16840-16854 ◽  
Author(s):  
Wenjie Yue ◽  
Yuli Lin ◽  
Xuguang Yang ◽  
Bingji Li ◽  
Jie Liu ◽  
...  

1995 ◽  
Vol 41 (6) ◽  
pp. 325-330 ◽  
Author(s):  
Yoshihiro Masuda ◽  
Seiji Mita ◽  
Kiyoshi Sakamoto ◽  
Takatoshi Ishiko Michio Ogawa

2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 432-432 ◽  
Author(s):  
N. Sawada ◽  
E. Taguchi ◽  
M. Takahashi

432 Background: KRN330 is a novel recombinant human IgG1 monoclonal antibody (mAb) targeting A33 surface differentiation antigen that is uniformly expressed on the surface of 95% of colorectal cancer (CRC) cells. In this study, we characterized the activity of KRN330 for its in vitro properties, as well as for its in vivo antitumor activity. Methods: A kinetic analysis of the interaction between KRN330 and recombinant human A33 was conducted using a Biacore 3000. Western blot analysis was conducted using A33 expressing COLO205 lysates under reducing and non-reducing conditions. Binding of KRN330 to human colorectal cancer tissues were investigated using FITC-labeled KRN330. We also developed more conventional staining methods of A33 and investigated A33 expression using human colon cancer tissue microarray (TMA). ADCC and CDC activities of KRN330 were assessed using a standard 51Cr release assay. A33 expression levels of 14 CRC cell lines were analyzed using flow cytometer. In vivo antitumor activities of KRN330 alone or in combination with chemotherapeutic agents against subcutaneous or intraperiotoneal human CRC (COLO205 and LS174T) models were investigated using mice and rats xenograft model. Results: A kinetic analysis revealed that KRN330 showed a high binding affinity to A33. Western blot analysis also showed that antibody recognized not any protein under reducing condition, but non-reducing condition. A33 staining of TMA with 204 different samples revealed the majority of tumor expressed A33. KRN330 exhibited ADCC activity against A33 expressing human colorectal cancer cell lines which include both K-ras wild and mutated types. KRN330 showed dose-dependent antitumor activities in vivo. KRN330 also significantly prolonged survival of human colon tumor bearing mice. In addition, combination treatment of KRN330 with irinotecan showed increased antitumor activitiy and prolongation of survival, compared to either irinotecan or KRN330 alone. Conclusions: These results suggest that KRN330 is a promising candidate of novel therapy for CRC. The phase I/II study of KRN330 plus irinotecan in patients with second line metastatic CRC is ongoing. [Table: see text]


2019 ◽  
Vol 97 (6) ◽  
pp. 731-739 ◽  
Author(s):  
Qian Yin ◽  
Pei-Pei Wang ◽  
Rui Peng ◽  
Hang Zhou

Colorectal cancer (CRC) is a devastating disease with high mortality and morbidity, and the underlying mechanisms of miR-19a in CRC are poorly understood. In our study, dual-luciferase reporter assays were used to evaluate the binding of miR-19a with thrombospondin-1 (THBS1). Cell viability, migration, and invasiveness were assessed using MTT, wound healing, and Transwell assays, respectively. Tube-formation assays with human lymphatic endothelial cells (HLECs) were used to evaluate lymphangiogenesis, and tumor xenograft assays were used to measure tumor growth. The results showed that miR-19a was up-regulated and THBS1 was down-regulated in CRC tissues and cells. Applying an inhibitor of miR-19a suppressed survival, migration, and invasiveness, and inhibited the expression of matrix metallopeptidase 9 (MMP-9) and vascular endothelial growth factor C (VEGFC). Further mechanistic study identified that THBS1 is a direct target of miR-19a. THBS1 silencing attenuated the above-mentioned suppressive effects induced with the miR-19a inhibitor. Furthermore, the miR-19a inhibitor suppressed the migration and tube-formation abilities of HLECs via targeting the THBS1–MMP-9/VEGFC signaling pathway. And the inhibition of miR-19a also suppressed tumor growth and lymphatic tube formation in vivo. In conclusion, miR-19a inhibition suppresses the viability, migration, and invasiveness of CRC cells, and suppresses the migration and tube-formation abilities of HLECs, and further, inhibits tumor growth and lymphatic tube formation in vivo via targeting THBS1.


2012 ◽  
Vol 24 (3) ◽  
pp. 718-725 ◽  
Author(s):  
Ben Hui Li ◽  
Shuang Bing Xu ◽  
Feng Li ◽  
Xiao Guang Zou ◽  
Abudukeyoumu Saimaiti ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1830 ◽  
Author(s):  
Tung-Yung Huang ◽  
Tung-Cheng Chang ◽  
Yu-Tang Chin ◽  
Yi-Shin Pan ◽  
Wong-Jin Chang ◽  
...  

The property of drug-resistance may attenuate clinical therapy in cancer cells, such as chemoresistance to gefitinib in colon cancer cells. In previous studies, overexpression of PD-L1 causes proliferation and metastasis in cancer cells; therefore, the PD-L1 pathway allows tumor cells to exert an adaptive resistance mechanism in vivo. Nano-diamino-tetrac (NDAT) has been shown to enhance the anti-proliferative effect induced by first-line chemotherapy in various types of cancer, including colorectal cancer (CRC). In this work, we attempted to explore whether NDAT could enhance the anti-proliferative effect of gefitinib in CRC and clarified the mechanism of their interaction. The MTT assay was utilized to detect a reduction in cell proliferation in four primary culture tumor cells treated with gefitinib or NDAT. The gene expression of PD-L1 and other tumor growth-related molecules were quantified by quantitative polymerase chain reaction (qPCR). Furthermore, the identification of PI3K and PD-L1 in treated CRC cells were detected by western blotting analysis. PD-L1 presentation in HCT116 xenograft tumors was characterized by specialized immunohistochemistry (IHC) and the hematoxylin and eosin stain (H&E stain). The correlations between the change in PD-L1 expression and tumorigenic characteristics were also analyzed. (3) The PD-L1 was highly expressed in Colo_160224 rather than in the other three primary CRC cells and HCT-116 cells. Moreover, the PD-L1 expression was decreased by gefitinib (1 µM and 10 µM) in two cells (Colo_150624 and 160426), but 10 µM gefitinib stimulated PD-L1 expression in gefitinib-resistant primary CRC Colo_160224 cells. Inactivated PI3K reduced PD-L1 expression and proliferation in CRC Colo_160224 cells. Gefitinib didn’t inhibit PD-L1 expression and PI3K activation in gefitinib-resistant Colo_160224 cells. However, NDAT inhibited PI3K activation as well as PD-L1 accumulation in gefitinib-resistant Colo_160224 cells. The combined treatment of NDAT and gefitinib inhibited pPI3K and PD-L1 expression and cell proliferation. Additionally, NDAT reduced PD-L1 accumulation and tumor growth in the HCT116 (K-RAS mutant) xenograft experiment. (4) Gefitinib might suppress PD-L1 expression but did not inhibit proliferation through PI3K in gefitinib-resistant primary CRC cells. However, NDAT not only down-regulated PD-L1 expression via blocking PI3K activation but also inhibited cell proliferation in gefitinib-resistant CRCs.


2019 ◽  
Vol 116 (47) ◽  
pp. 23625-23635 ◽  
Author(s):  
Takahiro Kodama ◽  
Teresa A. Marian ◽  
Hubert Lee ◽  
Michiko Kodama ◽  
Jian Li ◽  
...  

Myocardin-related transcription factor B (MRTFB) is a candidate tumor-suppressor gene identified in transposon mutagenesis screens of the intestine, liver, and pancreas. Using a combination of cell-based assays, in vivo tumor xenograft assays, and Mrtfb knockout mice, we demonstrate here that MRTFB is a human and mouse colorectal cancer (CRC) tumor suppressor that functions in part by inhibiting cell invasion and migration. To identify possible MRTFB transcriptional targets, we performed whole transcriptome RNA sequencing in MRTFB siRNA knockdown primary human colon cells and identified 15 differentially expressed genes. Among the top candidate tumor-suppressor targets were melanoma cell adhesion molecule (MCAM), a known tumor suppressor, and spindle apparatus coiled-coil protein 1 (SPDL1), which has no confirmed role in cancer. To determine whether these genes play a role in CRC, we knocked down the expression of MCAM and SPDL1 in human CRC cells and showed significantly increased invasion and migration of tumor cells. We also showed that Spdl1 expression is significantly down-regulated in Mrtfb knockout mouse intestine, while lower SPDL1 expression levels are significantly associated with reduced survival in CRC patients. Finally, we show that depletion of MCAM and SPDL1 in human CRC cells significantly increases tumor development in xenograft assays, further confirming their tumor-suppressive roles in CRC. Collectively, our findings demonstrate the tumor-suppressive role of MRTFB in CRC and identify several genes, including 2 tumor suppressors, that act downstream of MRTFB to regulate tumor growth and survival in CRC patients.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Jing Yao ◽  
Jun Yang ◽  
Zhe Yang ◽  
Xin-Ping Wang ◽  
Tong Yang ◽  
...  

AbstractColorectal tumorigenesis is a heterogeneous disease driven by multiple genetic and epigenetic alterations. F-box and WD repeat domain containing 11 (FBXW11) is a member of the F-box protein family that regulates the ubiquitination of key factors associated with tumor growth and aggressiveness. Our study aimed to explore the role of FBXW11 in the development and metastasis of colorectal cancer (CRC). FBXW11 was overexpressed in colorectal tumor tissues and its overexpression was associated with a poor prognosis of CRC patients. The upregulation of FBXW11 not only promoted cell proliferation, invasion, and migration, but also contributed to maintaining stem-cell features in colorectal tumor cells. Further analysis revealed that FBXW11 targeted hypermethylated in cancer 1 (HIC1) and reduced its stability in CRC cells through ubiquitination. Moreover, the expression of sirtuin 1 (SIRT1), a deacetylase in tumor cells was upregulated by FBXW11 via regulating HIC1 expression. The mouse xenograft models of CRC confirmed that FBXW11 knockdown impeded colorectal tumor growth and liver metastasis in vivo. In summary, our study identified FBXW11 as an oncogenic factor that contributed to stem-cell-like properties and liver metastasis in CRC via regulating HIC1-mediated SIRT1 expression. These results provide a rationale for the development of FBXW11-targeting drugs for CRC patients.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1252
Author(s):  
Daniil V. Gladkikh ◽  
Aleksandra V. Sen′kova ◽  
Ivan V. Chernikov ◽  
Tatyana O. Kabilova ◽  
Nelly A. Popova ◽  
...  

In this study, we examined the in vivo toxicity of the liposomes F consisting of 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20-tetraazahexacosan tetrahydrochloride, lipid-helper 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and folate lipoconjugate (O-{2-[rac-2,3-di(tetradecyloxy)prop-1-yloxycarbonyl]aminoethyl}-O’-[2-(pteroyl-L-glutam-5-yl)aminoethyl]octadecaethyleneglycol) and investigated the antitumor effect of combined antitumor therapy consisting of MDR1-targeted siMDR/F complexes and conventional polychemotherapy using tumor xenograft initiated in immunodeficient mice. Detailed analysis of acute and chronic toxicity of this liposomal formulation in healthy C57BL/6J mice demonstrated that formulation F and parent formulation L (without folate lipoconjugate) have no acute and chronic toxicity in mice. The study of the biodistribution of siMDR/F lipoplexes in SCID mice with xenograft tumors formed by tumor cells differing in the expression level of folate receptors showed that the accumulation in various types of tumors strongly depends on the abandons of folate receptors in tumor cells and effective accumulation occurs only in tumors formed by cells with the highest FR levels. Investigating the effects of combined therapy including anti-MDR1 siRNA/F complexes and polychemotherapy on a multidrug-resistant KB-8-5 tumor xenograft in SCID mice demonstrated that siMDR/F increases the efficiency of polychemotherapy: the treatment leads to pronounced inhibition of tumor growth, reduced necrosis and inflammation, and stimulates apoptosis in KB-8-5 tumor tissue. At the same time, it does not induce liver toxicity in tumor-bearing mice. These data confirm that folate-containing liposome F mediated the extremely efficient delivery of siRNA in FR-expressing tumors in vivo and ensured the safety and effectiveness of its action.


Sign in / Sign up

Export Citation Format

Share Document