scholarly journals Synthesis and Validation of a Bioinspired Catechol-Functionalized Pt(IV) Prodrug for Preclinical Intranasal Glioblastoma Treatment

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 410
Author(s):  
Xiaoman Mao ◽  
Shuang Wu ◽  
Pilar Calero-Pérez ◽  
Ana P. Candiota ◽  
Paula Alfonso ◽  
...  

Glioblastoma is the most malignant and frequently occurring type of brain tumors in adults. Its treatment has been greatly hampered by the difficulty to achieve effective therapeutic concentration in the tumor sites due to its location and the blood–brain barrier. Intranasal administration has emerged as an alternative for drug delivery into the brain though mucopenetration, and rapid mucociliary clearance still remains an issue to be solved before its implementation. To address these issues, based on the intriguing properties of proteins secreted by mussels, polyphenol and catechol functionalization has already been used to promote mucopenetration, intranasal delivery and transport across the blood–brain barrier. Thus, herein we report the synthesis and study of complex 1, a Pt(IV) prodrug functionalized with catecholic moieties. This complex considerably augmented solubility in contrast to cisplatin and showed a comparable cytotoxic effect on cisplatin in HeLa, 1Br3G and GL261 cells. Furthermore, preclinical in vivo therapy using the intranasal administration route suggested that it can reach the brain and inhibit the growth of orthotopic GL261 glioblastoma. These results open new opportunities for catechol-bearing anticancer prodrugs in the treatment for brain tumors via intranasal administration.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi82-vi82 ◽  
Author(s):  
Ellina Schulz ◽  
Almuth F Kessler ◽  
Ellaine Salvador ◽  
Dominik Domröse ◽  
Malgorzata Burek ◽  
...  

Abstract OBJECTIVE For glioblastoma patients Tumor Treating Fields (TTFields) have been established as adjuvant therapy. The blood brain barrier (BBB) tightly controls the influx of the majority of compounds from blood to brain. Therefore, the BBB may block delivery of drugs for treatment of brain tumors. Here, the influence of TTFields on BBB permeability was assessed in vivo. METHODS Rats were treated with 100 kHz TTFields for 72 h and thereupon i.v. injected with Evan’s Blue (EB) which directly binds to Albumin. To evaluate effects on BBB, EB was extracted after brain homogenization and quantified. In addition, cryosections of rat brains were prepared following TTFields application. The sections were stained for tight junction proteins Claudin-5 and Occludin and for immunoglobulin G (IgG) to assess vessel structure. Furthermore, serial dynamic contrast-enhanced DCE-MRI with Gadolinium contrast agent was performed before and after TTFields application. RESULTS TTFields application significantly increased the EB accumulation in the rat brain. In TTFields-treated rats, the vessel structure became diffuse compared to control cryosections of rat brains; Claudin 5 and Occludin were delocalized and IgG was found throughout the brain tissue. Serial DCE-MRI demonstrated significantly increased accumulation of Gadolinium in the brain, observed directly after 72 h of TTFields application. The effect of TTFields on the BBB disappeared 96 h after end of treatment and no difference in contrast enhancement between controls and TTFields treated animals was detectable. CONCLUSION By altering BBB integrity and permeability, application of TTFields at 100 kHz may have the potential to deliver drugs to the brain, which are unable to cross the BBB. Utilizing TTFields to open the BBB and its subsequent recovery could be a clinical approach of drug delivery for treatment of brain tumors and other diseases of the central nervous system. These results will be further validated in clinical Trials.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii49-iii49
Author(s):  
A F Keßler ◽  
E Salvador ◽  
D Domröse ◽  
M Burek ◽  
C Tempel Brami ◽  
...  

Abstract BACKGROUND Alternating electric fields with intermediate frequency (100 - 300 kHz) and low intensity (1 - 3 V/cm), known as Tumor Treating Fields (TTFields), have been established as a novel adjuvant therapy for glioblastoma (GBM) patients. The blood brain barrier (BBB) tightly controls the influx of the majority of compounds from blood to brain. Due to this regulation, the BBB may block delivery of drugs for treatment of brain tumors, in particular GBM. In this study, we investigated the influence of TTFields on BBB permeability in vivo. MATERIAL AND METHODS For determination of BBB permeability, rats were treated with 100 kHz TTFields for 72 h. At the end of treatment, rats were i.v. injected with Evan′s Blue (EB), which binds Albumin (~70 kDa) upon injection to the blood. EB was extracted after brain homogenization and quantified at 610 nm. In addition, cryosections of rat brains were prepared following TTFields application at 100 kHz for 72 h, and sections were stained for Claudin 5, Occludin and immunoglobulin G (IgG) to assess vessel structure. Moreover, serial dynamic contrast-enhanced DCE-MRI with Gadolinium contrast agent (Gd) was performed before and after TTFields application. RESULTS In vivo, the EB accumulation in the brain was significantly increased by application of TTFields to the rat head. Claudin 5 and Occludin staining was visible in vessel endothelial cells and localized at the cells’ edges in control cryosections of rat brains. In TTFields-treated rats, the vessel structure became diffuse; Claudin 5 and Occludin were delocalized and IgG was found throughout the brain tissue and not solely inside the vessels, as it is normally the case. Serial DCE-MRI demonstrated significantly increased accumulation of Gd in the brain, detected directly after 72 h of TTFields application. 96 h after end of TTFields treatment the effect on the BBB disappeared and no difference in contrast enhancement between controls and TTFields treated animals was observable. CONCLUSION Application of TTFields at 100 kHz could have the potential to deliver drugs to the brain, which normally are unable to cross the BBB by altering BBB integrity and permeability. Utilizing TTFields to open the BBB and its subsequent recovery, as demonstrated by the data presented herein, could lead to a clinical approach of drug delivery for treatment of malignant brain tumors and other diseases of the central nervous system. These results will be further validated in clinical trials.


1996 ◽  
Vol 84 (3) ◽  
pp. 494-502 ◽  
Author(s):  
Bernhard Zünkeler ◽  
Richard E. Carson ◽  
Jeffrey Olson ◽  
Ronald G. Blasberg ◽  
Mary Girton ◽  
...  

✓ Hyperosmolar blood-brain barrier (BBB) disruption remains controversial as an adjuvant therapy to increase delivery of water-soluble compounds to extracellular space in the brain in patients with malignant brain tumors. To understand the physiological effects of BBB disruption more clearly, the authors used positron emission tomography (PET) to study the time course of BBB permeability in response to the potassium analog rubidium-82 (82Rb, halflife 75 seconds) following BBB disruption in anesthetized adult baboons. Mannitol (25%) was injected into the carotid artery and PET scans were performed before and serially at 8- to 15-minute intervals after BBB disruption. The mean influx constant (K1), a measure of permeability-surface area product, in ipsilateral, mannitol-perfused mixed gray- and white-matter brain regions was 4.9 ± 2.4 µl/min/ml (± standard deviation) at baseline and increased more than 100% (ΔK1 = 9.4 ± 5.1 µl/min/ml, 18 baboons) in brain perfused by mannitol. The effect of BBB disruption on K1 correlated directly with the total amount of mannitol administered (p < 0.005). Vascular permeability returned to baseline with a halftime of 24.0 ± 14.3 minutes. The mean brain plasma volume rose by 0.57 ± 0.34 ml/100 ml in ipsilateral perfused brain following BBB disruption. This work provides a basis for the in vivo study of permeability changes induced by BBB disruption in human brain and brain tumors.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1833
Author(s):  
Shannon Morgan McCabe ◽  
Ningning Zhao

Manganese (Mn) is a trace nutrient necessary for life but becomes neurotoxic at high concentrations in the brain. The brain is a “privileged” organ that is separated from systemic blood circulation mainly by two barriers. Endothelial cells within the brain form tight junctions and act as the blood–brain barrier (BBB), which physically separates circulating blood from the brain parenchyma. Between the blood and the cerebrospinal fluid (CSF) is the choroid plexus (CP), which is a tissue that acts as the blood–CSF barrier (BCB). Pharmaceuticals, proteins, and metals in the systemic circulation are unable to reach the brain and spinal cord unless transported through either of the two brain barriers. The BBB and the BCB consist of tightly connected cells that fulfill the critical role of neuroprotection and control the exchange of materials between the brain environment and blood circulation. Many recent publications provide insights into Mn transport in vivo or in cell models. In this review, we will focus on the current research regarding Mn metabolism in the brain and discuss the potential roles of the BBB and BCB in maintaining brain Mn homeostasis.


2020 ◽  
Vol 13 (10) ◽  
pp. 279
Author(s):  
Dina Sikpa ◽  
Lisa Whittingstall ◽  
Martin Savard ◽  
Réjean Lebel ◽  
Jérôme Côté ◽  
...  

The blood–brain barrier (BBB) is a major obstacle to the development of effective diagnostics and therapeutics for brain cancers and other central nervous system diseases. Peptide agonist analogs of kinin B1 and B2 receptors, acting as BBB permeabilizers, have been utilized to overcome this barrier. The purpose of the study was to provide new insights for the potential utility of kinin analogs as brain drug delivery adjuvants. In vivo imaging studies were conducted in various animal models (primary/secondary brain cancers, late radiation-induced brain injury) to quantify BBB permeability in response to kinin agonist administrations. Results showed that kinin B1 (B1R) and B2 receptors (B2R) agonists increase the BBB penetration of chemotherapeutic doxorubicin to glioma sites, with additive effects when applied in combination. B2R agonist also enabled extravasation of high-molecular-weight fluorescent dextrans (155 kDa and 2 MDa) in brains of normal mice. Moreover, a systemic single dose of B2R agonist did not increase the incidence of metastatic brain tumors originating from circulating breast cancer cells. Lastly, B2R agonist promoted the selective delivery of co-injected diagnostic MRI agent Magnevist in irradiated brain areas, depicting increased vascular B2R expression. Altogether, our findings suggest additional evidence for using kinin analogs to facilitate specific access of drugs to the brain.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Inge C. M. Verheggen ◽  
Joost J. A. de Jong ◽  
Martin P. J. van Boxtel ◽  
Alida A. Postma ◽  
Frans R. J. Verhey ◽  
...  

Abstract Background Circumventricular organs (CVOs) are small structures without a blood–brain barrier surrounding the brain ventricles that serve homeostasic functions and facilitate communication between the blood, cerebrospinal fluid and brain. Secretory CVOs release peptides and sensory CVOs regulate signal transmission. However, pathogens may enter the brain through the CVOs and trigger neuroinflammation and neurodegeneration. We investigated the feasibility of dynamic contrast-enhanced (DCE) MRI to assess the CVO permeability characteristics in vivo, and expected significant contrast uptake in these regions, due to blood–brain barrier absence. Methods Twenty healthy, middle-aged to older males underwent brain DCE MRI. Pharmacokinetic modeling was applied to contrast concentration time-courses of CVOs, and in reference to white and gray matter. We investigated whether a significant and positive transfer from blood to brain could be measured in the CVOs, and whether this differed between secretory and sensory CVOs or from normal-appearing brain matter. Results In both the secretory and sensory CVOs, the transfer constants were significantly positive, and all secretory CVOs had significantly higher transfer than each sensory CVO. The transfer constants in both the secretory and sensory CVOs were higher than in the white and gray matter. Conclusions Current measurements confirm the often-held assumption of highly permeable CVOs, of which the secretory types have the strongest blood-to-brain transfer. The current study suggests that DCE MRI could be a promising technique to further assess the function of the CVOs and how pathogens can potentially enter the brain via these structures. Trial registration: Netherlands Trial Register number: NL6358, date of registration: 2017-03-24


2016 ◽  
Vol 37 (6) ◽  
pp. 2185-2195 ◽  
Author(s):  
Sylvain Auvity ◽  
Hélène Chapy ◽  
Sébastien Goutal ◽  
Fabien Caillé ◽  
Benoit Hosten ◽  
...  

Diphenhydramine, a sedative histamine H1-receptor (H1R) antagonist, was evaluated as a probe to measure drug/H+-antiporter function at the blood–brain barrier. In situ brain perfusion experiments in mice and rats showed that diphenhydramine transport at the blood–brain barrier was saturable, following Michaelis–Menten kinetics with a Km = 2.99 mM and Vmax = 179.5 nmol s−1 g−1. In the pharmacological plasma concentration range the carrier-mediated component accounted for 77% of diphenhydramine influx while passive diffusion accounted for only 23%. [14C]Diphenhydramine blood–brain barrier transport was proton and clonidine sensitive but was influenced by neither tetraethylammonium, a MATE1 (SLC47A1), and OCT/OCTN (SLC22A1-5) modulator, nor P-gp/Bcrp (ABCB1a/1b/ABCG2) deficiency. Brain and plasma kinetics of [11C]diphenhydramine were measured by positron emission tomography imaging in rats. [11C]Diphenhydramine kinetics in different brain regions were not influenced by displacement with 1 mg kg−1 unlabeled diphenhydramine, indicating the specificity of the brain positron emission tomography signal for blood–brain barrier transport activity over binding to any central nervous system target in vivo. [11C]Diphenhydramine radiometabolites were not detected in the brain 15 min after injection, allowing for the reliable calculation of [11C]diphenhydramine brain uptake clearance (Clup = 0.99 ± 0.18 mL min−1 cm−3). Diphenhydramine is a selective and specific H+-antiporter substrate. [11C]Diphenhydramine positron emission tomography imaging offers a reliable and noninvasive method to evaluate H+-antiporter function at the blood–brain barrier.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Linan Liu ◽  
Mark A. Eckert ◽  
Hamidreza Riazifar ◽  
Dong-Ku Kang ◽  
Dritan Agalliu ◽  
...  

Systemically infused mesenchymal stem cells (MSCs) are emerging therapeutics for treating stroke, acute injuries, and inflammatory diseases of the central nervous system (CNS), as well as brain tumors due to their regenerative capacity and ability to secrete trophic, immune modulatory, or other engineered therapeutic factors. It is hypothesized that transplanted MSCs home to and engraft at ischemic and injured sites in the brain in order to exert their therapeutic effects. However, whether MSCs possess the ability to migrate across the blood-brain barrier (BBB) that separates the blood from the brain remains unresolved. This review analyzes recent advances in this area in an attempt to elucidate whether systemically infused MSCs are able to actively transmigrate across the CNS endothelium, particularly under conditions of injury or stroke. Understanding the fate of transplanted MSCs and their CNS trafficking mechanisms will facilitate the development of more effective stem-cell-based therapeutics and drug delivery systems to treat neurological diseases and brain tumors.


2008 ◽  
Vol 82 (15) ◽  
pp. 7591-7600 ◽  
Author(s):  
Hongwei Wang ◽  
Jinglin Sun ◽  
Harris Goldstein

ABSTRACT Human immunodeficiency virus type 1 (HIV-1), introduced into the brain by HIV-1-infected monocytes which migrate across the blood-brain barrier (BBB), infects resident macrophages and microglia and initiates a process that causes HIV-1-associated neurocognitive disorders. The mechanism by which HIV-1 infection circumvents the BBB-restricted passage of systemic leukocytes into the brain and disrupts the integrity of the BBB is not known. Circulating lipopolysaccharide (LPS), which can compromise the integrity of the BBB, is significantly increased in HIV-1-infected individuals. We hypothesized that HIV-1 infection increases monocyte capacity to migrate across the BBB, which is further facilitated by a compromise of BBB integrity mediated by the increased systemic LPS levels present in HIV-1-infected individuals. To investigate this possibility, we examined the in vivo BBB migration of monocytes derived from our novel mouse model, JR-CSF/EYFP mice, which are transgenic for both a long terminal repeat-regulated full-length infectious HIV-1 provirus and ROSA-26-regulated enhanced yellow fluorescent protein. We demonstrated that JR-CSF/EYFP mouse monocytes displayed an increased capacity to enter the brain by crossing either an intact BBB or a BBB whose integrity was partially compromised by systemic LPS. We also demonstrated that the JR-CSF mouse BBB was more susceptible to disruption by systemic LPS than the control wild-type mouse BBB. These results demonstrated that HIV-1 infection increased the ability of monocytes to enter the brain and increased the sensitivity of the BBB to disruption by systemic LPS, which is elevated in HIV-1-infected individuals. These mice represent a new in vivo system for studying the mechanism by which HIV-1-infected monocytes migrate into the brain.


Sign in / Sign up

Export Citation Format

Share Document