scholarly journals CircFISH: A Novel Method for the Simultaneous Imaging of Linear and Circular RNAs

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 428
Author(s):  
Aakash Koppula ◽  
Ahmed Abdelgawad ◽  
Jlenia Guarnerio ◽  
Mona Batish ◽  
Vijay Parashar

Circular RNAs (circRNAs) are regulatory RNAs which have recently been shown to have clinical significance in several diseases, including, but not limited to, various cancers, neurological diseases and cardiovascular diseases. The function of such regulatory RNAs is largely dependent on their subcellular localization. Several circRNAs have been shown to conduct antagonistic roles compared to the products of the linear isoforms, and thus need to be characterized distinctly from the linear RNAs. However, conventional fluorescent in situ hybridization (FISH) techniques cannot be employed directly to distinguish the signals from linear and circular isoforms because most circRNAs share the same sequence with the linear RNAs. In order to address this unmet need, we adapted the well-established method of single-molecule FISH by designing two sets of probes to differentiate the linear and circular RNA isoforms by virtue of signal colocalization. We call this method ‘circular fluorescent in situ hybridization’ (circFISH). Linear and circular RNAs were successfully visualized and quantified at a single-molecule resolution in fixed cells. RNase R treatment during the circFISH reduced the levels of linear RNAs while the circRNA levels remain unaltered. Furthermore, cells with shRNAs specific to circRNA showed the loss of circRNA levels, whereas the linear RNA levels were unaffected. The optimization of the in-situ RNase R treatment allowed the multiplexing of circFISH to combine it with organelle staining. CircFISH was found to be compatible with multiple sample types, including cultured cells and fresh-frozen and formalin-fixed tissue sections. Thus, we present circFISH as a versatile method for the simultaneous visualization and quantification of the distribution and localization of linear and circular RNA in fixed cells and tissue samples.

1998 ◽  
Vol 35 (2) ◽  
pp. 153-156 ◽  
Author(s):  
M. Boye ◽  
T. K. Jensen ◽  
K. Møller ◽  
T. D. Leser ◽  
S. E. Jorsal

Fluorescent in situ hybridization targeting 16S ribosomal RNA was used for specific detection of the obligate intracellular bacterium Lawsonia intracellularis in enterocytes from pigs affected by proliferative enteropathy. A specific oligonucleotide probe was designed and the specificity of the probe was determined by simultaneous comparison with indirect immunofluorescence assay for detection of L. intracellularis in formalin-fixed tissue samples from 15 pigs affected by porcine proliferative enteropathy. We used 10 tissue samples from pigs without proliferative mucosal changes as negative controls. The results showed that the oligonucleotide probe is specific for L. intracellularis and that fluorescent in situ hybridization targeting ribosomal RNA is a suitable and fast method for specific detection and histological recognition of L. intracellularis in formalin-fixed tissue.


2021 ◽  
Author(s):  
Penghui Xu ◽  
Xing Zhang ◽  
Jiacheng Cao ◽  
Jing Yang ◽  
Zetian Chen ◽  
...  

Abstract Background: Gastric cancer (GC) ranks third in motality among all cancers worldwide. Circular RNAs (circRNAs) play essential roles in the malignant progression and metastasis of gastric cancer. As a transcription factor, FOXP2 is involved in the progression of many tumours. However, the regulation and association between circRNAs and FOXP2 remain to be discovered. Methods: RNA sequencing was used to explore differential circRNA expression profile in gastric cancer and quantitative real-time PCR (qRT-PCR) were used to detect circST3GAL6 expression. The cellular location of circST3GAL6 was determined by fluorescence in situ hybridization (FISH). Functional experiments in circST3GAL6 knockdown and overexpression cell lines were performed in vitro and in vivo. The correlation between circST3GAL6 and miR-300 was confirmed by the RNA pull-down assay, dual-luciferase reporter assay and fluorescence in situ hybridization (FISH). The effects of circST3GAL6 on autophagy were detected by confocal microscopy and transmission electron microscopy (TEM). The mechanism of the circST3GAL6/miR-300/FOXP2 axis was verified by western blotting. The transcriptional regulation of Met by FOXP2 was proven by ChIP and luciferase reporter assays.Results: CircST3GAL6 was significantly depressed in GC tissues and cells. circST3GAL6 overexpression inhibited the proliferation, invasion and metastasis of GC cells in vitro and in vivo. Importantly, circST3GAL6 overexpression induced apoptosis and promote autophagy in GC cells. Furthermore, we found that circST3GAL6 sponged miR-300 and subsequently regulated FOXP2. We further revealed that FOXP2 suppressed the activation of the Met/AKT/mTOR axis, a classic pathway that regulates autophagy-mediated proliferation and migration.Conclusion: Our findings revealed that circST3GAL6 functions as a tumour suppressor through the miR-300/FOXP2 axis in GC, regulates apoptosis and autophagy through FOXP2-mediated transcriptional inhibition of the MET axis and may be a biomarker for GC treatment.


2020 ◽  
Author(s):  
Llilians Calvo ◽  
Matthew Ronshaugen ◽  
Tom Pettini

ABSTRACTRecently, advances in fluorescent in-situ hybridization techniques and in imaging technology have enabled visualisation and counting of individual RNA molecules in single cells. This has greatly enhanced the resolution in our understanding of transcriptional processes. Here, we adapt a recently published smiFISH protocol (single-molecule inexpensive fluorescent in-situ hybridization) to whole embryos across a range of arthropod model species, and also to non-embryonic tissues. Using multiple fluorophores with distinct spectra and white light laser confocal imaging, we simultaneously detect and separate single RNAs from up to eight different genes in a whole embryo. We also combine smiFISH with cell membrane immunofluorescence, and present an imaging and analysis pipeline for 3D cell segmentation and single-cell RNA counting in whole blastoderm embryos. Finally, using whole embryo single-cell RNA count data, we propose two alternative single-cell variability measures to the commonly used Fano factor, and compare the capacity of these three measures to address different aspects of single-cell expression variability.


Sign in / Sign up

Export Citation Format

Share Document