scholarly journals Diels–Alder Cycloaddition of Biomass-Derived 2,5-Dimethylfuran and Ethylene over Sulfated and Phosphated Metal Oxides for Renewable p-Xylene

Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1074
Author(s):  
Hanbyeol Kim ◽  
Jungho Jae

In this work, sulfated and phosphated metal oxides were studied as catalysts for the Diels–Alder cycloaddition of biomass-derived 2,5-dimethylfuran (DMF) and ethylene to understand the effect of acid strength on the reaction. Four catalysts with varied acidity, namely sulfated SiO2, sulfated TiO2, phosphated SiO2, and phosphated TiO2, were prepared via wet impregnation using sulfuric acid and phosphoric acid as precursors, and their structural and acid properties were examined using X-ray diffraction, Brunauer–Emmett–Teller analysis, Fourier transform infrared spectroscopy, solid state 31P magic angle spinning nuclear magnetic resonance spectroscopy, and temperature programmed desorption of ammonia. The results revealed that the acidity of the catalysts was largely influenced by the type of the acid functional group and the support as well as the calcination temperature. The conversion of DMF and the selectivity toward p-Xylene (PX) were generally correlated with the total acid site density and the acid–metal oxide interaction strength, which in turn affected the acid strength. Overall, phosphated SiO2 and TiO2 calcined at 773 K were identified as the most active and selective catalysts, exhibiting a high PX selectivity of over 70% and DMF conversion of 80% at 523 K after 6 h. The origin of the stability of the highly active phosphated catalysts was also investigated in detail.

2021 ◽  
Vol 2 (1) ◽  
pp. 39-48
Author(s):  
Nguyen H. H. Phuc ◽  
Takaki Maeda ◽  
Tokoharu Yamamoto ◽  
Hiroyuki Muto ◽  
Atsunori Matsuda

A solid solution of a 100Li3PS4·xLi3PO4 solid electrolyte was easily prepared by liquid-phase synthesis. Instead of the conventional solid-state synthesis methods, ethyl propionate was used as the reaction medium. The initial stage of the reaction among Li2S, P2S5 and Li3PO4 was proved by ultraviolet-visible spectroscopy. The powder X-ray diffraction (XRD) results showed that the solid solution was formed up to x = 6. At x = 20, XRD peaks of Li3PO4 were detected in the prepared sample after heat treatment at 170 °C. However, the samples obtained at room temperature showed no evidence of Li3PO4 remaining for x = 20. Solid phosphorus-31 magic angle spinning nuclear magnetic resonance spectroscopy results proved the formation of a POS33− unit in the sample with x = 6. Improvements of ionic conductivity at room temperature and activation energy were obtained with the formation of the solid solution. The sample with x = 6 exhibited a better stability against Li metal than that with x = 0. The all-solid-state half-cell employing the sample with x = 6 at the positive electrode exhibited a better charge–discharge capacity than that employing the sample with x = 0.


1998 ◽  
Vol 62 (2) ◽  
pp. 165-178 ◽  
Author(s):  
C. M. B. Henderson ◽  
A. M. T. Bell ◽  
S. C. Kohn ◽  
C. S. Page

AbstractThe structure of a synthetic end-member wairakite (CaAl2Si4O12·2H2O) has been determined using Rietveld analysis of high-resolution, synchrotron X-ray powder diffraction data, and 29Si and 27Al magic angle spinning nuclear magnetic resonance spectroscopy. The framework in the synthetic sample is more disordered than that in natural wairakite. Ca is distributed over the cavity cation sites M2, M12A, M12B in the approximate proportions 0.8:0.1:0.1, respectively, with M11 being vacant. 29Si MAS NMR data are consistent with about 80% of the Si occupying tetrahedral T11 and T12 sites linked to two Al atoms [Q4(2Al) silicons]. Tetrahedral and cavity cation site disorder are coupled so that Al mainly occupies T2 sites, with Ca in M12A and M12B being balanced by Al in T12A and T12B; T11A and T11B sites appear to only contain Si, in agreement with the M11 site being vacant. The crystal chemistries of the wide range of stoichiometries which crystallize with the leucite/pollucite structure-type are also reviewed, with particular attention being paid to the tetrahedral ordering configurations present in these phases, and the implications to crystallographic phase transitions.


Sign in / Sign up

Export Citation Format

Share Document