scholarly journals A Novel Heterogeneous Superoxide Support-Coated Catalyst for Production of Biodiesel from Roasted and Unroasted Sinapis arvensis Seed Oil

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1421
Author(s):  
Maryam Hanif ◽  
Haq Nawaz Bhatti ◽  
Muhammad Asif Hanif ◽  
Umer Rashid ◽  
Asma Hanif ◽  
...  

Disadvantages of biodiesel include consumption of edible oils for fuel production, generation of wastewater and inability to recycle catalysts during homogenously catalyzed transesterification. The aim of the current study was to utilize low-cost, inedible oil extracted from Sinapis arvensis seeds to produce biodiesel using a novel nano-composite superoxide heterogeneous catalyst. Sodium superoxide (NaO2) was synthesized by reaction of sodium nitrate with hydrogen peroxide via spray pyrolysis, followed by coating onto a composite support material prepared from silicon dioxide, potassium ferricyanide and granite. The roasted (110 °C, 20 min) and unroasted S. arvensis seeds were subjected to high vacuum fractional distillation to afford fractions (F1, F2 and F3) that correlated to molecular weight. For example, F1 was enriched in palmitic acid (76–79%), F2 was enriched in oleic acid (69%) and F3 was enriched in erucic acid (61%). These fractions, as well as pure unroasted and roasted S. arvensis seed oils, were then transesterified using NaO2/SiO2/PFC/Granite to give biodiesel a maximum yield of 98.4% and 99.2%, respectively. In contrast, yields using immobilized lipase catalyst were considerably lower (78–85%). Fuel properties such as acid value, cetane number, density, iodine value, pour point, and saponification value were within the ranges specified in the American biodiesel standard, ASTM D6751, where applicable. These results indicated that the nano-composite catalyst was excellent for production of biodiesel from unroasted and roasted S. arvensis seed oil and its fractions.

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7148
Author(s):  
Ayesha Mushtaq ◽  
Muhammad Asif Hanif ◽  
Muhammad Zahid ◽  
Umer Rashid ◽  
Zahid Mushtaq ◽  
...  

Biodiesel has attracted considerable interest as an alternative biofuel due to its many advantages over conventional petroleum diesel such as inherent lubricity, low toxicity, renewable raw materials, biodegradability, superior flash point, and low carbon footprint. However, high production costs, poor low temperature operability, variability of fuel quality from different feedstocks, and low storage stability negatively impact more widespread adoption. In order to reduce production costs, inexpensive inedible oilseed alternatives are needed for biodiesel production. This study utilized inedible tamarind (Tamarind indica) seed oil as an alternative biodiesel feedstock, which contained linoleic (31.8%), oleic (17.1%), and lauric (12.0%) acids as the primary fatty acids. A simple and cost-effective high vacuum fractional distillation (HVFD) methodology was used to separate the oil into three fractions (F1, F2, and F3). Subsequent transesterification utilizing basic, acidic, and enzymatic catalysis produced biodiesel of consistent quality and overcame the problem of low temperature biodiesel performance. The most desirable biodiesel with regard to low temperature operability was produced from fractions F2 and F3, which were enriched in unsaturated fatty acids relative to tamarind seed oil. Other properties such as density and cetane number were within the limits specified in the American and European biodiesel standards.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6064
Author(s):  
Vikas Sharma ◽  
Abul Kalam Hossain ◽  
Ganesh Duraisamy ◽  
Murugan Vijay

Energy consumption is on the rise due to rapid technological progress and a higher standard of living. The use of alternative energy resources is essential to meet the rising energy demand and mitigate the carbon emissions caused due to use of fossil-based fuels. Biodiesel produced from non-edible oils such as castor seed oil (CO) can be used in diesel engines to replace fossil diesel. However, the quality and yields for CO biodiesel is low due to the presence of ricinolic acid C18:1OH (79%). In this study, two-stage conversion techniques were used to improve the yields and properties of CO biodiesel. The catalyst CaCu(OCH3)2 was prepared from waste eggshell and synthesized with copper oxide in the presence of methanol. The castor oil was subjected to pyrolysis at 450–500 ℃ and then transesterified in the presence of modified catalyst. The reaction parameters such as methanol-to-oil ratio and catalyst and reaction time were investigated, and the optimum combination was used to produce castor biodiesel from pyrolysis castor oil. Results showed that the cetane number and oxidation stability were increased by 7% and 42% respectively. The viscosity, density, flash point, and iodine value were decreased by 52%, 3%, 5% and 6%, respectively. The calorific values remained the same. This study suggests that pyrolyzed castor seed oil followed by transesterification in the presence of a modified catalyst gave better fuel properties and yields than the conventional transesterification process for biodiesel fuel production.


2021 ◽  
Author(s):  
Jyotirmoy Kakati ◽  
Tapan K. Gogoi ◽  
Sukhamoy Pal ◽  
Ujjwal K. Saha

Abstract Biodiesel has been accepted as a clean and an eco-friendly green diesel fuel by the entire world. In India, various non-edible oils have been tested for exploring their suitability as a fuel in diesel engines. In the north eastern states of India, many oil bearing seeds such as Koroch (a variety of Pongamia glabra), Nahar (Mesua ferrea), Terminalia (Terminalia belerica Robx), Kutkura (Meyna spinosa Roxb), Amari (Amoora Wallichii King), Yellow oleander (Thevetia peruviana) and others are found in abundance. In this article, the Yellow oleander seed oil (YOSO) has been investigated for biodiesel production and characterization. The oil content in Yellow oleander seed is found to be 63.87%. The free fatty acid (FFA) content in YOSO is measured, and is found to be 32.0%; hence the two-step acid-base catalysis transesterification process has been adopted for producing biodiesel from the YOSO. YOSO contains 5.03% palmitic, 6.92% stearic, 48.14% oleic and 31.37% linoleic acid. The density, calorific value and kinematic viscosity of Yellow oleander fatty acid methyl ester (YO-FAME) are 879.7 kg/m3, 40.159 MJ/kg and 4.63 mm2/s respectively. Most of the fuel properties of YO-FAME meet ASTM D6751 and EN 14214 biodiesel standards. The YO-FAME exhibits a low sulphur content of 13.0 ppm and a high cetane number of 58.3. Fire point and pour point of YO-FAME were found to be 158°C and 5°C respectively. The physio-chemical properties of YO-FAME has been compared with FAME of Yellow oleander, Ratanjot (Jatropha curcus), Terminalia (Terminalia belerica Robx.) and Nahar (Mesua ferrea).


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 110
Author(s):  
Katalin Szabo ◽  
Francisc Vasile Dulf ◽  
Bernadette-Emőke Teleky ◽  
Panagiota Eleni ◽  
Christos Boukouvalas ◽  
...  

The circular economy action plan involves principles related to food waste reduction and integration of recovered nutrients to the market. In this context, the present study aims to highlight the valuable bioactive components found in tomato processing by-products (carotenoids, phenolic compounds and fatty acids) influenced by industrial pre-treatments, particularly cold break (CB) process at 65–75 °C and hot break (HB) process at 85–95 °C. The fatty acid profile of the tomato seed oil was examined by gas chromatography coupled to mass spectrometry (GC-MS), individual carotenoid and phenolic compositions were determined by high performance liquid chromatography (HPLC) and the viscoelastic properties were evaluated by rheological measurements. The physicochemical properties revealed appropriate characteristics of the tomato seed oil to fit the standards of generally accepted edible oils, for both CB and HB derived samples, however, significant qualitative and quantitative differences were detected in their phenolic composition and carotenoids content. Lycopene (37.43 ± 1.01 mg/100 mL) was a major carotenoid in the examined samples, linoleic acid was the main fatty acid (61.73%) detected in the tomato seed oil and syringic acid appeared to be one of two major phenolic acids detected in the samples of CB process. Our findings extend the boundaries of tomato processing industry by validating that tomato seed oil is a bioactive rich edible oil with additional health benefits, which can be integrated in functional food products.


2021 ◽  
Vol 36 (1) ◽  
pp. 53-66
Author(s):  
C. Esonye ◽  
O. D Onukwuli ◽  
S. O. Momoh

Currently the major challenge of biodiesel application as a replacement to petrodiesel is its industrial production sustainability.Consequently, the successful scale-up of laboratory results in transesterification requires so much information obtained through chemical kinetics.This paper presents the kinetics and thermodynamic study of alkali-homogeneous irreversible methanolysis of seed oil derived from African pear. The transesterification process was carried out from 0-100 minutes at temperature range of 55-65°C. The reaction mixture compositions were ascertained using gas chromatography- flame ionization detector (GC-FID) technique. Rate constants of the triglyceride (Tg), diglycerides (Dg) and monoglycerides(Mg) hydrolysis were in the range of 0.0140- 0.07810 wt%/min and increased with increase in temperature. The rate of reaction was found to increase with increase in temperature. Activation energies were found to be 6.14, 20.01 and 28.5kcal/mol at 55, 60 and 65oC respectively. Tg hydrolysis to Dg was observed asthe rate determining step while the reaction agreed with second order principles. A biodiesel yield of 93.02% was obtained with cloud point of 10°C , flash point of 125°C , pour point of 4°C , calorific value of 34.4MJ/kg, and cetane number of 54.90 which satisfy EN14214 and ASTM D 6751 standards. Results presented in this report would serve as idealized conditions for industrial scale up of biodiesel production from African pear seed oil. Keywords:Kinetics; methanolysis; rate constants; activation energy; African pear seed oil; biodiesel


Fuel ◽  
2012 ◽  
Vol 96 ◽  
pp. 611
Author(s):  
Xun Li ◽  
Xiao-Yun He ◽  
Zhi-Lin Li ◽  
You-Dong Wang ◽  
Chun-Yu Wang ◽  
...  

Author(s):  
Vijaya Lakshmi Ch ◽  
Uday Bhaskar R.V.S ◽  
Viswanath Kotra ◽  
Satyavathi Bankupalli

Biodiesel from clean oils is comparatively easier than production from crude and non-edible oils. To achieve maximum yield of biodiesel, a two stage process is adopted in which non-edible oils are used as feed-stock: an acid catalyzed esterification of free fatty acids followed by base catalyzed transesterification. Presence of water formed during esterification reaction is detrimental to a viable transesterification process. In the present work, an alternate method for removal of water by in situ hydrolysis reaction of methyl acetate is introduced. The dehydration using methyl acetate during esterification has yielded good results as the soap formed during transesterification was minimal. The results indicated high conversion of triglycerides to methyl ester for lower oil to methanol ratio and at a lower temperature. For 1:3 molar ratio of oil to methanol, the conversion obtained was less than 90 percent and is equivalent to conversions with higher alcohol ratios during esterification in the absence of methyl acetate. These results are indicative of the fact that use of methyl acetate reduces the alcohol to oil ratio without affecting the conversions. Moreover, higher conversions are possible at lower temperatures in the presence of methyl acetate. It is further observed that the oils that are subjected to free fatty acid conversions in the presence of methyl acetate record very little soap formation during the transesterification reactions, thereby resulting in higher grade of biodiesel.


OCL ◽  
2018 ◽  
Vol 25 (3) ◽  
pp. A302 ◽  
Author(s):  
Vanessa Sousa ◽  
Vitor Campos ◽  
Patrícia Nunes ◽  
Paula Pires-Cabral

Structured lipids (SLs) are novel triacylglycerols obtained by changing the native fatty acid (FA) profiles or by the incorporation of a new desired FA in the acylglycerol backbone. These modified fats present important medical and functional properties for food applications. This work aimed to synthetize a MLM-type SL, which consists of triacylglycerols containing a medium-chain FA (M) at sn-1,3 positions and a long-chain FA (L) at sn-2 position, by acidolysis of pumpkin seed oil with capric acid, catalyzed by a commercial lipase preparation from Thermomyces lanuginosa (Lipozyme TL IM). Reactions were performed at 45 °C, in solvent-free media, at 1:2 molar ratio (pumpkin seed oil:capric acid) and a fixed amount of immobilized lipase of 5%, 10%, 15% or 20%. Incorporations of C10:0 increased with time up to 31 h (29.9 ± 0.7 mol-%) when 5% lipase load was used. Significant differences were only observed between the results obtained with 5 and 20% of biocatalyst load. The subsequent experiment was carried out with 5% lipase load, at 45 °C, 1:2 molar ratio and in the presence of n-hexane. The results showed slightly higher incorporation yields in the presence of solvent, namely at 48 h-reaction (34.7 ± 1.0 mol-%). However, since the structured lipids are to be used in food products, together with environmental and economic concerns, solvent-free systems are preferred. In this study, the synthesis of a MLM-type SL from pumpkin seed oil for food uses was well succeeded.


2012 ◽  
Vol 629 ◽  
pp. 266-272
Author(s):  
De Min Kong ◽  
Ai Hua Liu ◽  
Bao Yuan Man ◽  
Mei Liu ◽  
Jin Jin Guo ◽  
...  

High-quality β-Ga2O3 films andβ-Ga2O3 /ZnO/β-Ga2O3 nano composite thin films were fabricated on the sapphire substrates in the high vacuum atmosphere by laser molecular beam epitaxy (LMBE). The lattice structure and optical properties of these films were characterized.With the increase of the sputtering time of ZnO target ,Photoluminescence spectrums and Raman spectrums of the β-Ga2O3 /ZnO/β-Ga2O3 nano composite films were shifted regularly . When the ZnO target was sputtered 30min , the stronggest peak of Raman spectrum was appeared at 267nm . Besides,the composition ofβ-Ga2O3 /ZnO/β-Ga2O3 nano composite film was described .


Sign in / Sign up

Export Citation Format

Share Document