scholarly journals Development of a Mesoporous Silica-Supported Layered Double Hydroxide Catalyst for the Reduction of Oxygenated Compounds in E. grandis Fast Pyrolysis Oils

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1527
Author(s):  
Danya Carla Maree ◽  
Mike Heydenrych

Biomass fast pyrolysis oil is a potential renewable alternative to fossil fuels, but its viability is constrained by its corrosiveness, low higher heating value and instability, caused by high oxygenate concentrations. A few studies have outlined layered double hydroxides (LDHs) as possible catalysts for the improvement of biomass pyrolysis oil characteristics. In this study, the goal was to reduce the concentration of oxygen-rich compounds in E. grandis fast pyrolysis oils using CaAl- and MgAl- LDHs. The LDHs were supported by mesoporous silica, synthesised at different pHs to obtain different pore sizes (3.3 to 4.8 nm) and surface areas (up to 600 m2/g). The effects of the support pore sizes and use of LDHs were investigated. GC/MS results revealed that MgAl-LDH significantly reduced the concentrations of ketones and oxygenated aromatics in the electrostatic precipitator oils and increased the concentration of aliphatics. CaAl-LDH had the opposite effect. There was little effect on the oxygenate concentrations of the heat exchanger oils, suggesting that there was a greater extent of conversion of the lighter oil compounds. Bomb calorimetry also showed a marked increase in higher heating values (16.2 to 22.5 MJ/kg) in the electrostatic precipitator oils when using MgAl-LDH. It was also found that the mesoporous silica support synthesised at a pH of 7 was the most effective, likely due to the intermediate average pore width (4 nm).

RSC Advances ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 398-409 ◽  
Author(s):  
Desavath V. Naik ◽  
Vimal Kumar ◽  
Basheshwar Prasad ◽  
Mukesh K. Poddar ◽  
Babita Behera ◽  
...  

The FCC product distribution on catalytic cracking of jatropha-derived fast pyrolysis oil (FPO) with VGO, hydrodeoxygenated oil (HDO) with VGO, and pure VGO is compared. The oxy-components in FPO and HDO are analyzed using 1H, 13C, and 31P NMR.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 707
Author(s):  
Anaheed A. Yaseen ◽  
Emaad T. B. Al-Tikrity ◽  
Gamal A. El-Hiti ◽  
Dina S. Ahmed ◽  
Mohammed A. Baashen ◽  
...  

Environmental problems associated with the growing levels of carbon dioxide in the atmosphere due to the burning of fossil fuels to satisfy the high demand for energy are a pressing concern. Therefore, the design of new materials for carbon dioxide storage has received increasing research attention. In this work, we report the synthesis of three new Schiff bases containing a trimethoprim unit and the investigation of their application as adsorbents for carbon dioxide capture. The reaction of trimethoprim and aromatic aldehydes in acid medium gave the corresponding Schiff bases in 83%–87% yields. The Schiff bases exhibited surface areas ranging from 4.15 to 20.33 m2/g, pore volumes of 0.0036–0.0086 cm3/g, and average pore diameters of 6.64–1.4 nm. An excellent carbon dioxide uptake (27–46 wt%) was achieved at high temperature and pressure (313 K and 40 bar, respectively) using the Schiff bases. The 3-hydroxyphenyl-substituted Schiff base, which exhibited a meta-arrangement, provided the highest carbon dioxide uptake (46 wt%) due to its higher surface area, pore volume, and pore diameter compared with the other two derivatives with a para-arrangement.


Author(s):  
Sangsig Yun ◽  
Minji Choi ◽  
Ashwani Kumar

Abstract Pyrolysis oil has become an important subject of research as it is considered to be a potential environmentally friendly and cheap alternative to conventional fossil fuels. Unfortunately, due to the significant differences of the chemical and physical properties of pyrolysis oil than that of fossil fuels, the deployment of pyrolysis oil in existing power systems such as gas turbines and internal combustion engines has been highly restricted. Thus, major research on pyrolysis oil has been conducted to overcome these challenges related to the unfavorable physical and chemical properties of pyrolysis oil. This paper reports experimental work on the effects of physical properties of the pyrolysis oil on spray performance of nozzles. Effort to evaluate the spray performance by using different types of atomizers has been made as well. Laser based diagnostics was applied to obtain qualitative comparisons spray characteristics of various pyrolysis oils. Experimental data such as the distribution of fuel droplet sizes and overall spray shapes was analyzed, which could provide valuable guidelines to design fuel nozzles. Lastly, the paper will also present NRC’s plans to accelerate the deployment of such pyrolysis oils in industrial gas turbines.


2017 ◽  
Vol 54 (3) ◽  
pp. 181-201
Author(s):  
Rebecca Johnson ◽  
Mark Longman ◽  
Brian Ruskin

The Three Forks Formation, which is about 230 ft thick along the southern Nesson Anticline (McKenzie County, ND), has four “benches” with distinct petrographic and petrophysical characteristics that impact reservoir quality. These relatively clean benches are separated by slightly more illitic (higher gamma-ray) intervals that range in thickness from 10 to 20 ft. Here we compare pore sizes observed in scanning electron microscope (SEM) images of the benches to the total porosity calculated from binned precession decay times from a suite of 13 nuclear magnetic resonance (NMR) logs in the study area as well as the logarithmic mean of the relaxation decay time (T2 Log Mean) from these NMR logs. The results show that the NMR log is a valid tool for quantifying pore sizes and pore size distributions in the Three Forks Formation and that the T2 Log Mean can be correlated to a range of pore sizes within each bench of the Three Forks Formation. The first (shallowest) bench of the Three Forks is about 35 ft thick and consists of tan to green silty and shaly laminated dolomite mudstones. It has good reservoir characteristics in part because it was affected by organic acids and received the highest oil charge from the overlying lower Bakken black shale source rocks. The 13 NMR logs from the study area show that it has an average of 7.5% total porosity (compared to 8% measured core porosity), and ranges from 5% to 10%. SEM study shows that both intercrystalline pores and secondary moldic pores formed by selective partial dissolution of some grains are present. The intercrystalline pores are typically triangular and occur between euhedral dolomite rhombs that range in size from 10 to 20 microns. The dolomite crystals have distinct iron-rich (ferroan) rims. Many of the intercrystalline pores are partly filled with fibrous authigenic illite, but overall pore size typically ranges from 1 to 5 microns. As expected, the first bench has the highest oil saturations in the Three Forks Formation, averaging 50% with a range from 30% to 70%. The second bench is also about 35 ft thick and consists of silty and shaly dolomite mudstones and rip-up clast breccias with euhedral dolomite crystals that range in size from 10 to 25 microns. Its color is quite variable, ranging from green to tan to red. The reservoir quality of the second bench data set appears to change based on proximity to the Nesson anticline. In the wells off the southeast flank of the Nesson anticline, the water saturation averages 75%, ranging from 64% to 91%. On the crest of the Nesson anticline, the water saturation averages 55%, ranging from 40% to 70%. NMR porosity is consistent across the entire area of interest - averaging 7.3% and ranging from 5% to 9%. Porosity observed from samples collected on the southeast flank of the Nesson Anticline is mainly as intercrystalline pores that have been extensively filled with chlorite clay platelets. In the water saturated southeastern Nesson Anticline, this bench contains few or no secondary pores and the iron-rich rims on the dolomite crystals are less developed than those in the first bench. The chlorite platelets in the intercrystalline pores reduce average pore size to 500 to 800 nanometers. The third bench is about 55 ft thick and is the most calcareous of the Three Forks benches with 20 to 40% calcite and a proportionate reduction in dolomite content near its top. It is also quite silty and shaly with a distinct reddish color. Its dolomite crystals are 20 to 50 microns in size and partly abraded and dissolved. Ferroan dolomite rims are absent. This interval averages 7.1% porosity and ranges from 5% to 9%, but the pores average just 200 nanometers in size and occur mainly as microinterparticle pores between illite flakes in intracrystalline pores in the dolomite crystals. This interval has little or no oil saturation on the southern Nesson Anticline. Unlike other porosity tools, the NMR tool is a lithology independent measurement. The alignment of hydrogen nuclei to the applied magnetic field and the subsequent return to incoherence are described by two decay time constants, longitudinal relaxation time (T1) and transverse relaxation time (T2). T2 is essentially the rate at which hydrogen nuclei lose alignment to the external magnetic field. The logarithmic mean of T2 (T2 Log Mean) has been correlated to pore-size distribution. In this study, we show that the assumption that T2 Log Mean can be used as a proxy for pore-size distribution changes is valid in the Three Forks Formation. While the NMR total porosity from T2 remains relatively consistent in the three benches of the Three Forks, there are significant changes in the T2 Log Mean from bench to bench. There is a positive correlation between changes in T2 Log Mean and average pore size measured on SEM samples. Study of a “type” well, QEP’s Ernie 7-2-11 BHD (Sec. 11, T149N, R95W, McKenzie County), shows that the 1- to 5-micron pores in the first bench have a T2 Log Mean relaxation time of 10.2 msec, whereas the 500- to 800-nanometer pores in the chlorite-filled intercrystalline pores in the second bench have a T2 Log Mean of 4.96 msec. This compares with a T2 Log Mean of 2.86 msec in 3rd bench where pores average just 200 nanometers in size. These data suggest that the NMR log is a useful tool for quantifying average pore size in the various benches of the Three Forks Formation.


RSC Advances ◽  
2021 ◽  
Vol 11 (43) ◽  
pp. 26732-26738
Author(s):  
Victor Garcia-Montoto ◽  
Sylvain Verdier ◽  
David C. Dayton ◽  
Ofei Mante ◽  
Carine Arnaudguilhem ◽  
...  

Renewable feedstocks, such as lignocelulosic fast pyrolysis oils and both vegetable oil and animal fats, are becoming a viable alternative to petroleum for producing high-quality renewable transportation fuels.


2021 ◽  
Vol 35 (3) ◽  
pp. 2303-2312
Author(s):  
Niklas Bergvall ◽  
Roger Molinder ◽  
Ann-Christine Johansson ◽  
Linda Sandström
Keyword(s):  

Fuel ◽  
2019 ◽  
Vol 252 ◽  
pp. 125-134 ◽  
Author(s):  
Pál Tóth ◽  
Christian Brackmann ◽  
Yngve Ögren ◽  
Manu Naduvil Mannazhi ◽  
Johan Simonsson ◽  
...  

ChemInform ◽  
2016 ◽  
Vol 47 (29) ◽  
Author(s):  
E. J. Leijenhorst ◽  
W. Wolters ◽  
L. van de Beld ◽  
W. Prins

Sign in / Sign up

Export Citation Format

Share Document