scholarly journals Photocatalytic Performance of Carbon-Containing CuMo-Based Catalysts under Sunlight Illumination

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Paula Muñoz-Flores ◽  
Po S. Poon ◽  
Catherine Sepulveda ◽  
Conchi O. Ania ◽  
Juan Matos

Carbon-doped nanostructured CuMo-based photocatalysts were prepared by solvothermal synthesis. Two thermal treatments—oxidative and inert atmosphere—were used for the synthesis of the catalysts, and the influence of spherical carbon structures upon the crystalline phases on the photocatalytic activity and stability was studied. XRD showed the catalysts are nanostructured and composed by a mixture of copper (Cu, Cu2O, and CuO) and molybdenum (MoO2 and MoO3) crystalline phases. The catalysts were used for the degradation of yellow 5 under solar light. A remarkable leaching of Mo both in dark and under solar irradiation was observed and quantified. This phenomenon was responsible for the loss of photocatalytic activity for the degradation of the dye on the Mo-containing series. Conversely, the Cu-based photocatalysts were stable, with no leaching observed after 6 h irradiation and with a higher conversion of yellow 5 compared with the Mo- and CuMo series. The stability of Cu-based catalysts was attributed to a protective effect of spherical carbon structures formed during the solvothermal synthesis. Regarding the catalysts’ composition, sample Cu4-800-N2 prepared by pyrolysis exhibited up to 4.4 times higher photoactivity than that of the pristine material, which is attributed to a combined effect of an enhanced surface area and micropore volume generated during the pyrolytic treatment due to the presence of the carbon component in the catalyst. Scavenger tests have revealed that the mechanism for tartrazine degradation on irradiated Cu-based catalysts involves successive attacks of •OH radicals.

2017 ◽  
Author(s):  
Dnyaneshwar R. Shinde ◽  
Popat S. Tambade ◽  
Manohar G. Chaskar ◽  
Kisan M. Gadave

Abstract. In a search of low cost photocatalyst for dye degradation we have evaluated photocatalytic activity of the Analytical Reagent (AR) grade ZnO, TiO2 and SnO2. The photocatalytic activity was evaluated towards the decolourization of structurally diverse dyes such as crystal violet, basic blue and methyl red under solar irradiation and compared with benchmark Degussa P-25 (TiO2) photocatalyst. The received metal oxides were characterized by the different physicochemical methods of analysis. Powder XRD analysis showed that these metal oxides are polycrystalline in nature and crystallized in different crystalline phases. The crystalline phases of these oxides were found to be hexagonal for ZnO, tetragonal for TiO2 and rutile for SnO2. Particle morphology was analysed through SEM imaging and it showed that these oxides consists of different particle morphologies and have different particle sizes. Band gap was evaluated from diffuse reflectance spectra and it was found to be 3.24, 3.20 and 3.66 eV respectively for ZnO, TiO2 and SnO2. Among the three AR grade oxides, ZnO exhibited highest photocatalytic activity which is even higher than Degussa P-25 (TiO2) photocatalyst. About 20 % enhancement in the photocatalytic activity of AR grade ZnO was observed when silver metal loaded of on ZnO surface.


Author(s):  
Trinh Duy Nguyen ◽  
Seong Soo Hong

A highly crystallized monoclinic-scheelite type BiVO4 powders were successfully synthesized by solvothermal method. The as-synthesized BiVO4 powders were characterized by XRD, FE-SEM, Raman spectroscopy, UV-vis DRS spectroscopy and TA-PL. From the XRD data and Raman spectra, the monoclinic-scheelite phase BiVO4 sample can be obtained at higher solvothermal synthesis temperature more than 140 oC. The preparation conditions such as, the Bi/V molar ratio and synthesis temperature, have significantly effects on the morphologies of the BiVO4 samples. BVO2 sample shows the highest PL peak, which has the highest formation rate of OH radicals and the highest photocatalytic activity. This result suggests that the formation rate of OH radicals shows a good correlation with the photocatalytic activity.


2018 ◽  
Vol 69 (9) ◽  
pp. 2366-2371
Author(s):  
Andrei Cucos ◽  
Petru Budrugeac ◽  
Iosif Lingvay ◽  
Adriana Mariana Bors ◽  
Andreea Voina

Thermal TG/DTG/DTA analysis coupled with FTIR spectroscopy was applied to some sorts of mineral and vegetable oils used in electrical equipment. On heating in inert atmosphere, it was observed that the mineral oils vaporize, while the vegetable oils undergo hydrolysis, yielding fatty acids as main volatiles, as indicated by FTIR. In synthetic air, the FTIR spectra of gaseous products confirm the presence of similar oxidation products, both for mineral and vegetable oils. The TG results indicated that the vegetable-based oils exhibit a substantially higher thermal stability than the mineral oils. The presence or absence of anti-oxidant inhibitors in these oils greatly influences the onset of the oxidation process in air environment factor, as results from the DTA results.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 208
Author(s):  
Guillermo García-Díez ◽  
Roger Monreal-Corona ◽  
Nelaine Mora-Diez

The thermodynamic stability of 11 complexes of Cu(II) and 26 complexes of Fe(III) is studied, comprising the ligands pyridoxamine (PM), ascorbic acid (ASC), and a model Amadori compound (AMD). In addition, the secondary antioxidant activity of PM is analyzed when chelating both Cu(II) and Fe(III), relative to the rate constant of the first step of the Haber-Weiss cycle, in the presence of the superoxide radical anion (O2•−) or ascorbate (ASC−). Calculations are performed at the M05(SMD)/6-311+G(d,p) level of theory. The aqueous environment is modeled by making use of the SMD solvation method in all calculations. This level of theory accurately reproduces the experimental data available. When put in perspective with the stability of various complexes of aminoguanidine (AG) (which we have previously studied), the following stability trends can be found for the Cu(II) and Fe(III) complexes, respectively: ASC < AG < AMD < PM and AG < ASC < AMD < PM. The most stable complex of Cu(II) with PM (with two bidentate ligands) presents a ΔGf0 value of −35.8 kcal/mol, whereas the Fe(III) complex with the highest stability (with three bidentate ligands) possesses a ΔGf0 of −58.9 kcal/mol. These complexes can significantly reduce the rate constant of the first step of the Haber-Weiss cycle with both O2•− and ASC−. In the case of the copper-containing reaction, the rates are reduced up to 9.70 × 103 and 4.09 × 1013 times, respectively. With iron, the rates become 1.78 × 103 and 4.45 × 1015 times smaller, respectively. Thus, PM presents significant secondary antioxidant activity since it is able to inhibit the production of ·OH radicals. This work concludes a series of studies on secondary antioxidant activity and allows potentially new glycation inhibitors to be investigated and compared relative to both PM and AG.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 589
Author(s):  
Sivagowri Shanmugaratnam ◽  
Balaranjan Selvaratnam ◽  
Aravind Baride ◽  
Ranjit Koodali ◽  
Punniamoorthy Ravirajan ◽  
...  

Earth–abundant transition metal chalcogenide materials are of great research interest for energy production and environmental remediation, as they exhibit better photocatalytic activity due to their suitable electronic and optical properties. This study focuses on the photocatalytic activity of flower-like SnS2 nanoparticles (composed of nanosheet subunits) embedded in TiO2 synthesized by a facile hydrothermal method. The materials were characterized using different techniques, and their photocatalytic activity was assessed for hydrogen evolution reaction and the degradation of methylene blue. Among the catalysts studied, 10 wt. % of SnS2 loaded TiO2 nanocomposite shows an optimum hydrogen evolution rate of 195.55 µmolg−1, whereas 15 wt. % loading of SnS2 on TiO2 exhibits better performance against the degradation of methylene blue (MB) with the rate constant of 4.415 × 10−4 s−1 under solar simulated irradiation. The improved performance of these materials can be attributed to the effective photo-induced charge transfer and reduced recombination, which make these nanocomposite materials promising candidates for the development of high-performance next-generation photocatalyst materials. Further, scavenging experiments were carried out to confirm the reactive oxygen species (ROS) involved in the photocatalytic degradation. It can be observed that there was a 78% reduction in the rate of degradation when IPA was used as the scavenger, whereas around 95% reduction was attained while N2 was used as the scavenger. Notably, very low degradation (<5%) was attained when the dye alone was directly under solar irradiation. These results further validate that the •OH radical and the superoxide radicals can be acknowledged for the degradation mechanism of MB, and the enhancement of degradation efficiency may be due to the combined effect of in situ dye sensitization during the catalysis and the impregnation of low bandgap materials on TiO2.


2021 ◽  
Vol 13 (4) ◽  
pp. 2004
Author(s):  
Udari Wijesinghe ◽  
Gobika Thiripuranathar ◽  
Haroon Iqbal ◽  
Farid Menaa

Owing to the development of nanotechnology, biosynthesis of nanoparticles (NPs) is gaining considerable attention as a cost-effective and eco-friendly approach that minimizes the effects of toxic chemicals used in NP fabrication. The present work reports low-cost phytofabrication of zinc oxide (ZnO) NPs employing aqueous extracts of various parts (leaves, stems, and inflorescences) of Tephrosia purpurea (T. purpurea). The formation, structure, morphology, and other physicochemical properties of ZnO NPs were characterized by ultraviolet–visible (UV–Vis) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS). UV–Vis spectral analysis revealed sharp surface plasmon resonance (SPR) at around 250–280 nm, while the XRD patterns confirmed distinctive peaks indices to the crystalline planes of hexagonal wurtzite ZnO NPs. TEM analysis confirmed the presence of spherical-shaped ZnO NPs with average particle sizes (PS) between 25–35 nm, which was in agreement with the XRD results. FTIR analysis revealed that phenolics, flavonoids, amides, alkaloids, and amines present in the plant extract are responsible for the stabilization of the ZnO NPs. Further, the hydrodynamic diameter in the range of 85–150 nm was measured using the DLS technique. The fluorescence resonance energy transfer (FRET) ability of biogenic ZnO NPs was evaluated, and the highest efficiency was found in ZnO NPs synthesized via T. purpurea inflorescences extract. Photoluminescence (PL) spectra of biogenic ZnO NPs showed three emission peaks consisting of a UV–Vis region with high-intensity compared to that of chemically synthesized ZnO NPs. The biosynthesized ZnO NPs showed photocatalytic activity under solar irradiation by enhancing the degradation rate of methylene blue (MB). Among the prepared biogenic ZnO NPs, T. purpurea leaves mediated with NPs acted as the most effective photocatalyst, with a maximum degradation efficiency of 98.86% and a half-life of 84.7 min. This is the first report related to the synthesis of multifunctional ZnO NPs using T. purpurea, with interesting characteristics for various potential applications in the future.


Author(s):  
Sonam Rani ◽  
Alok Garg ◽  
Neetu Singh

Abstract Photocatalysis is an extraordinary and vastly researched topic; there is a need to find new ways to support producing composite materials that are cost-effective, efficient and have a low environmental impact. The investigation was undertaken on syn TiO2 by depositing it on silica. The results elucidate the positive effect on photocatalysis activity and the macroscopic structure on which the TiO2 is formed. For the analysis of photocatalyst, various characterisation measurements were undertaken, such as XRD, FTIR, DRS, FESEM, TEM, RS, and BET. The accumulated TiO2 onto the surface of SiO2 stabilised its transformation of the phase from anatase to rutile, resulting in decreased particle size and enhancing its photocatalytic activity under UV irradiation. The concentration of OH• radicals was determined using terephthalic acid as a probe molecule to determine its role in the photocatalytic degradation of antihistamine. The results of BET analysis showed that the syn TiO2-SiO2 sample has a large specific surface area of 192.6 m2 g−1. Maximum degradation of cetirizine (about 97%) was achieved with 80% TiO2-20% SiO2 (TS-4). Recyclability test confirmed that 80% TiO2-20% SiO2 sample was stable up to six cycles.


Sign in / Sign up

Export Citation Format

Share Document