scholarly journals Closed-Form Formulation of the Thermodynamically Consistent Electrochemical Model Considering Electrochemical Co-Oxidation of CO and H2 for Simulating Solid Oxide Fuel Cells

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Andraž Kravos ◽  
Tomaž Katrašnik

Achieving efficient solid oxide fuel cell operation and simultaneous prevention of degradation effects calls for the development of precise on-line monitoring and control tools based on predictive, computationally fast models. The originality of the proposed modelling approach originates from the hypothesis that the innovative derivation procedure enables the development of a thermodynamically consistent multi-species electrochemical model that considers the electrochemical co-oxidation of carbon monoxide and hydrogen in a closed-form. The latter is achieved by coupling the equations for anodic reaction rates with the equation for anodic potential. Furthermore, the newly derived model is capable of accommodating the diffusive transport of gaseous species through the gas diffusion layer, yielding a computationally efficient quasi-one-dimensional model. This resolves a persistent knowledge gap, as the proposed modelling approach enables the modelling of multi-species fuels in a closed form, resulting in very high computational efficiency, and thus enable the model’s real-time capability. Multiple validation steps against polarisation curves with different fuel mixtures confirm the capability of the newly developed model to replicate experimental data. Furthermore, the presented results confirm the capability of the model to accurately simulate outside the calibrated variation space under different operating conditions and reformate mixtures. These functionalities position the proposed model as a beyond state-of-the-art tool for model supported development and control applications.

Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 36 ◽  
Author(s):  
Bruno Conti ◽  
Barbara Bosio ◽  
Stephen John McPhail ◽  
Francesca Santoni ◽  
Davide Pumiglia ◽  
...  

Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) technology offers interesting opportunities in the panorama of a larger penetration of renewable and distributed power generation, namely high electrical efficiency at manageable scales for both remote and industrial applications. In order to optimize the performance and the operating conditions of such a pre-commercial technology, an effective synergy between experimentation and simulation is fundamental. For this purpose, starting from the SIMFC (SIMulation of Fuel Cells) code set-up and successfully validated for Molten Carbonate Fuel Cells, a new version of the code has been developed for IT-SOFCs. The new release of the code allows the calculation of the maps of the main electrical, chemical, and physical parameters on the cell plane of planar IT-SOFCs fed in co-flow. A semi-empirical kinetic formulation has been set-up, identifying the related parameters thanks to a devoted series of experiments, and integrated in SIMFC. Thanks to a multi-sampling innovative experimental apparatus the simultaneous measurement of temperature and gas composition on the cell plane was possible, so that a preliminary validation of the model on local values was carried out. A good agreement between experimental and simulated data was achieved in terms of cell voltages and local temperatures, but also, for the first time, in terms of local concentration on the cell plane, encouraging further developments. This numerical tool is proposed for a better interpretation of the phenomena occurring in IT-SOFCs and a consequential optimization of their performance.


2016 ◽  
Vol 20 (5) ◽  
pp. 1421-1433 ◽  
Author(s):  
Ismet Tikiz ◽  
Imdat Taymaz

Cell temperature and selection of the reactant gases are crucial parameters for the design and optimization of fuel cell performance. In this study, effect of operating conditions on the performance of Solid Oxide Fuel (SOFC) has been investigated. Application of Response Surface Methodology (RSM) was applied to optimize operations conditions in SOFC. For this purpose, an experimental set up for testing of SOFC has been established to investigate the effect of Hydrogen, Oxygen, Nitrogen flow rates and cell temperature parameters on cell performance. Hydrogen flow rate, oxygen flow rate, nitrogen flow rate and cell temperature were the main parameters considered and they were varied between 0.25 and 1 L/min, 0.5 and 1 L/min, 0 and 1 L/min and 700-800 oC in the analyses respectively. The maximum power density was found as 0.572 W/cm2 in the experiments.


2005 ◽  
Author(s):  
Comas L. Haynes ◽  
J. Chris Ford

During latter-stage, “start-up” heating of a solid oxide fuel cell (SOFC) stack to a desired operating temperature, heat may be generated in an accelerating manner during the establishment of electrochemical reactions. This is because a temperature rise in the stack causes an acceleration of electrochemical transport given the typical Arrhenius nature of the electrolyte conductivity. Considering a potentiostatic condition (i.e., prescribed cell potential), symbiosis thus occurs because greater current prevalently leads to greater by-product heat generation, and vice versa. This interplay of the increasing heat generation and electrochemistry is termed “light off”, and an initial model has been developed to characterize this important thermal cycling phenomenon. The results of the simulation begin elucidating the prospect of using cell potential as well as other electrochemical operating conditions (e.g., reactants utilization) as dynamic controls in managing light off transients and possibly mitigating thermal cycling issues.


Sign in / Sign up

Export Citation Format

Share Document